
Elliot J. Crowley, 25th March 2024

Data Analysis and Machine
Learning 4 (DAML)
Week 10: Deep Neural Networks

1

• We looked at Gaussian processes for regression

• We saw how changing the kernel affected the GP prior and posterior

Recap

2

Linear regression

• Given training data (,) we can learn a model:

• s.t.

• We want to map the data to a space where we can fit a hyperplane to it

{(x(n), y(n))}N
n=1 x ∈ ℝD y ∈ ℝ

f(x) = w⊤ϕ(x) + b y(n) ≈ f(x(n))∀n

ϕ

ϕ

ϕ(x) = x2

3

(Binary) linear classifiers

• Given training data (,) we can learn a model:

• s.t. the hyperplane separates the classes

• We want to map the data to a space where classes can be separated by a
hyperplane

{(x(n), y(n))}N
n=1 x ∈ ℝD y ∈ {0,1}

f(x) = w⊤ϕ(x) + b f(x) = 0

ϕ

ϕ(x) = [
∥x∥

tan−1 x1

x0
]

ϕ

4

Multi-dimensional output

• What if we want to perform multi-class classification or regress to a multi-
dimensional output ?

 with and

becomes

 with with and

• We will assume this is the default output from now on as it is more general

f(x) ∈ ℝK

f(x) = w⊤ϕ(x) + b w ∈ ℝZ b ∈ ℝ

f(x) = Wϕ(x) + b W ∈ ℝZ×K b ∈ ℝK

5

Feature learning

• Trying to design for a new problem can be tedious or impossible!

• What if we could learn directly from our training data?

• This is what deep learning entails. It’s feature learning!

• We represent as a parameterised function and learn jointly with
and

ϕ

ϕ

ϕ ϕθf
(x) θf W

b

f(x) = Wϕ(x) + b f(x) = Wϕθf
(x) + b

minimise
W,b

L minimise
θf ,W,b

L

6

Deep neural networks (DNNs)

• These are non-linear models (traditionally) consisting of functional layers

• The first layers form a learnable feature map . These are known
as hidden layers

• The last layer is (often) a linear transformation of the features

ℒ

f(x) = f (ℒ) ∘ f (ℒ−1) ∘ … ∘ f (2) ∘ f (1)(x)

ℒ − 1 ϕ(x)

ϕ(x) = f (ℒ−1)…f (2) f (1)(x)

f(x) = f (ℒ)(ϕ(x)) = W(ℒ)ϕ(x) + b(ℒ)

f (1) f (2) f (ℒ−1) f (ℒ)x f(x)ϕ(x)

7

• A DNN takes the form

• An MLP is a network where each hidden layer output is

 for

• The layer input is the output of the previous layer

• This undergoes a linear transformation

• It then passes through a non-linear activation function

f(x) = f (ℒ) ∘ f (ℒ−1) ∘ … ∘ f (2) ∘ f (1)(x)

h(l) ∈ ℝHl

h(l) = f (l)(h(l−1)) = g(W(l)h(l−1) + b(l)) l = 1,2,…, ℒ − 1

h(l−1) ∈ ℝHl−1

g
 is known as the pre-activation

 is called an activation function and layer outputs are called activations

a(l) = W(l)h(l−1) + b(l)

g h(l)

The multilayer perceptron (MLP)

f (1) f (2) f (ℒ−1) f (ℒ)x f(x)h(1) h(ℒ−1)h(2) h(ℒ−2)

ϕ(x)
h(ℒ)

8

Activation functions

• These make our function non-linear. Without them an MLP collapses into a
single linear transformation

• They are element-wise functions which means each element of the input
vector is individually transformed

g(z) = max(0,z)g(z) =
1

1 + e−z
9

Two layer MLP

• For a 2 layer MLP with and we have:

• We can write the whole MLP as

x ∈ ℝD f(x) ∈ ℝK

h(1) = g(W(1)x + b(1))

f(x) = W(2)h(1) + b(2)

f(x) = W(2)g(W(1)x + b(1)) + b(2)

The form of and the
dimensionality (or width) of
the hidden layer are design

decisions

g

10

2 layer MLP (with pre-specified weights) for XOR
• We are going to walk through a 2 layer MLP solving a classification problem

where the classes aren’t linearly separable

• We will use a ReLU activation and a hidden layer with a width of 2

11

Layer 1: Compute the pre-activation

 where and a(1) = W(1)x + b(1) W1 = [1 1
1 1] b1 = [0

−1]

Linear transform

The two class 1 points
are now on top of each

other

12

Layer 1: Apply the non-linearity

. This is ReLU so h = g(a) [
h(1)

1

h(1)
2] = [

max(0,a(1)
1)

max(0,a(1)
2)]

Non-linearity

13

Layer 2: Just a linear classifier
. Let’s just draw

This gives us a non-linear decision boundary in the original space

f(x) = W(2)h(1) + b(2) f(x) = 0

Here, we have
 (a

vector)and (a
scalar) because its binary
classification but I’m using
the more general matrix/
vector notation anyway

W2 = [1 −2]⊤

b2 = − 0.5

f(x) = 0

14

•

•

•

h(1) = g(W(1)x + b(1))

h(2) = g(W(2)h(1) + b(2))

f(x) = W(3)h(2) + b(3)

3 layer MLP

x ∈ ℝ2 h(1) ∈ ℝ2 h(2) ∈ ℝ2

f(x) = 0

W(1) = [2.7 9.6
13.6 11.7]

b(1) = [−7.4
8.0]

W(2) = [−7.9 11.0
7.9 −9.9]

b(2) = [1.8
3.2]

The form of and the width of the hidden layers
are design decisions!

g

Credit to Oisin Mac Aodha for this example

15

•

•

•

h(1) = g(W(1)x + b(1))

h(2) = g(W(2)h(1) + b(2))

f(x) = W(3)h(2) + b(3)

3 layer MLP

x ∈ ℝ2 h(1) ∈ ℝ2 h(2) ∈ ℝ2

f(x) = 0

W(1) = [2.7 9.6
13.6 11.7]

b(1) = [−7.4
8.0]

W(2) = [−7.9 11.0
7.9 −9.9]

b(2) = [1.8
3.2]

16

•

•

•

h(1) = g(W(1)x + b(1))

h(2) = g(W(2)h(1) + b(2))

f(x) = W(3)h(2) + b(3)

Another 3 layer MLP

x ∈ ℝ2 h(1) ∈ ℝ100 h(2) ∈ ℝ2

f(x) = 0

W(1) ∈ ℝ100×2

b(1) ∈ ℝ100

W(2) ∈ ℝ2×100

b(2) ∈ ℝ2

?

We are increasing the width of the 1st hidden
layer significantly here

17

h(1) = g(W(1)x + b(1))

h(2) = W(2)h(1) + b(2)

Alternate view of a (2 layer) MLP

x1

x2

h(1)
1

h(1)
2

h(1)
3

h(2)
1

h(2)
2

• Sometimes you see MLPs drawn as graphs

• Here, the elements of
 are represented by

nodes

• Stuff is happening at the node inputs!

• It follows that ,

• And also that ,

• Sometimes these nodes are referred to as neurons

x ∈ ℝ2, h(1) ∈ ℝ3, h(2) ∈ ℝ2

W(1) ∈ ℝ3×2 b(1) ∈ ℝ3

W(2) ∈ ℝ2×3 b(1) ∈ ℝ2

18

MLP: Layer 1

h(1) =
h(1)

1

h (1)
2

h (1)
3

= g(W(1)x + b(1)) = g(

w(1)
1,1 w(1)

1,2

w(1)
2,1 w(1)

2,2

w(1)
3,1 w(1)

3,2

[
x1
x2] +

b(1)
1

b(1)
2

b(1)
3

) • Consider one of the neurons of

• It receives a weighted sum of the input
neurons, to which a bias is added

• This pre-activation goes into an activation
function

• If we are using ReLU activations
 then the pre-activation must

be positive to pass through

• If this happens we say that the neuron has
been activated

h(1)

g

g(z) = max(0,z)
x1

x2

h(1)
1

h(1)
2

h(1)
3

w(1)
1,1

w(1)
3,2

+b(1)
1 g∑

w(1)
1,2 +b(1)

2 g∑

+b(1)
3 g∑

w(1)
3,1

w(1)
2,1

w(1)
2,2

19

MLP: Layer 2

h(2) = [
h(2)

1

h (2)
2] = W(2)h(1) + b(2) = [

w(2)
1,1 w(2)

1,2 w(2)
1,3

w(2)
2,1 w(2)

2,2 w(2)
2,3]

h(1)
1

h (1)
2

h (1)
3

+ [
b(2)

1

b(2)
2] • There is no activation function for the last

layer in this example

• It’s just a matrix multiplied by a vector plus
another vector

• The previous layer was the same + a non-
linearity

w(2)
1,1

h(2)
1

+b(2)
1∑

https://www.reddit.com/r/machinelearningmemes/comments/hst89w/always_has_been/

h(2)
2

+b(2)
2∑

h(1)
1

h(1)
2

h(1)
3

w(2)
2,1

w(2)
1,2

w(2)
2,2

w(2)
1,3

w(2)
2,3

20

Why MLPs?

• We’ve gone from learning your own features to a bunch of linear
transformations + activation functions

• There is a practical reason: apart from the activation function it’s all just matrix
multiplies which computers are very good at

• There is also theory in the form of a universal approximation theorem

• This basically tells us an MLP with at least 2 layers (and appropriate can
represent a wide range of functions when they have the right weights

g)

See https://www.deeplearningbook.org/contents/mlp.html 6.4.1 and https://cognitivemedium.com/magic_paper/assets/Hornik.pdf 21

https://www.deeplearningbook.org/contents/mlp.html

Too good to be true?
Step 1: Use a 2 layer MLP to solve intelligence

Step 2: Use that to solve everything else

• The universal approximation theorem tells us an appropriate 2 layer MLP
exists for lots of functions

• It doesn’t tell us how wide the hidden layer should be or what weights to use!

• To make things worse, losses involving DNNs are generally non-convex :(

• (But this isn’t actually that bad :)

https://arxiv.org/pdf/1712.09913.pdf 22

Going deeper

• Empirically, deeper networks (those with more layers) tend to work better up
to a certain point

• Now is good time to mention that deep learning is very empirical

• There are rules of thumb for e.g. the number of layers, layer widths

• However, often you need to try stuff out (or use existing models)

https://knowyourmeme.com/photos/531557-we-need-to-go-deeper
23

Learning the parameters of a 2 layer MLP

• For we can push a dataset through a 2 layer MLP using

• The learning process is very similar to that of linear models

• We pick an appropriate loss function e.g. log loss for classification

• We then find the parameters that minimise the loss

• i.e. we solve where

x ∈ ℝD X ∈ ℝN×D

H(1) = g(XW(1)⊤ + 1 b(1)⊤)

H(2) = H(1)W(2)⊤ + 1 b(2)⊤

L

minimise
θ

L θ = {W(1), b(1), W(2), b(2)}

 is a vector of ones 1 ∈ ℝN

24

The chain rule

• We can solve for using GD

• This involves computing gradients

• We can obtain expressions for these using the chain rule

minimise
θ

L θ = {W(1), b(1), W(2), b(2)}

∇θL = {(∂L
∂W(1))⊤, (∂L

∂b(1))⊤, (∂L
∂W(2))⊤, (∂L

∂b(2))⊤}

∂L
∂W(2)

=
∂L

∂H(2)

∂H(2)

∂W(2)

H(1) = g(XW(1)⊤ + 1 b(1)⊤)
H(2) = H(1)W(2)⊤ + 1 b(2)⊤

f (1) f (2)X H(1)
loss

W(1), b(1) W(2), b(2)

LH(2)

∂L
∂W(1)

=
∂L

∂H(2)

∂H(2)

∂H(1)

∂H(1)

∂W(1)

∂L
∂b(2)

=
∂L

∂H(2)

∂H(2)

∂b(2)

∂L
∂b(1)

=
∂L

∂H(2)

∂H(2)

∂H(1)

∂H(1)

∂b(1)

25

Warning! There be Jacobians. We aren’t going to delve into what these
terms actually look like on this course.

Automatic differentiation
• Computers can perform automatic differentiation (/auto-diff/autograd/magic)

• We don’t need to work out closed form expressions for any derivatives!
∂L

∂W(2)
=

∂L
∂H(2)

∂H(2)

∂W(2)

∂L
∂W(1)

=
∂L

∂H(2)

∂H(2)

∂H(1)

∂H(1)

∂W(1)

∂L
∂b(2)

=
∂L

∂H(2)

∂H(2)

∂b(2)

∂L
∂b(1)

=
∂L

∂H(2)

∂H(2)

∂H(1)

∂H(1)

∂b(1)

26

Learning the parameters of an layer MLPℒ

• For a dataset matrix our layer MLP is given by:

 for

• and is a non-linear activation function e.g. ReLU for all layers
but the last, which is typically the identity function

• The loss function takes in (and some labels/targets) and we want to
solve where

X ℒ

H(l) = g(l)(H(l−1)W(l)⊤ + 1 b(l)⊤) l = 1,2,…, ℒ

H(0) = X g(l)

H(ℒ)

minimise
θ

L θ = {W(l), b(l)}ℒ
l=1

f (1) f (2) f (ℒ−1) f (ℒ)X
H(1) H(ℒ−1)H(2) H(ℒ−2) H(ℒ)

loss L

W(1), b(1) W(2), b(2) W(ℒ−1), b(ℒ−1) W(ℒ), b(ℒ) 27

More chain rule!

• To use GD we need to compute

• We start with the last layer and can use the chain rule to write

• These expression are very similar so I’ll just consider the gradients for
now, knowing we can obtain the gradients in the same way

∇θL = {(∂L
∂W(l))⊤, (∂L

∂b(l))⊤}ℒ
l=1

W
b

∂L
∂W(ℒ)

=
∂L

∂H(ℒ)

∂H(ℒ)

∂W(ℒ)

∂L
∂b(ℒ)

=
∂L

∂H(ℒ)

∂H(ℒ)

∂b(ℒ)

f (1) f (2) f (ℒ−1) f (ℒ)X
H(1) H(ℒ−1)H(2) H(ℒ−2) H(ℒ)

loss L

W(1), b(1) W(2), b(2) W(ℒ−1), b(ℒ−1) W(ℒ), b(ℒ) 28

See Murphy p435 if you’re curious about the transposes.
Otherwise, don’t worry about them :)

What do you notice?
∂L

∂W(ℒ)
=

∂L
∂H(ℒ)

∂H(ℒ)

∂W(ℒ)

∂L
∂W(ℒ−1)

=
∂L

∂H(ℒ)

∂H(ℒ)

∂H(ℒ−1)

∂H(ℒ−1)

∂W(ℒ−1)

∂L
∂W(ℒ−2)

=
∂L

∂H(ℒ)

∂H(ℒ)

∂H(ℒ−1)

∂H(ℒ−1)

∂H(ℒ−2)

∂H(ℒ−2)

∂W(ℒ−2)

∂L
∂W(ℒ−3)

=
∂L

∂H(ℒ)

∂H(ℒ)

∂H(ℒ−1)

∂H(ℒ−1)

∂H(ℒ−2)

∂H(ℒ−2)

∂H(ℒ−3)

∂H(ℒ−3)

∂W(ℒ−3)

∂L
∂W(ℒ−4)

=
∂L

∂H(ℒ)

∂H(ℒ)

∂H(ℒ−1)

∂H(ℒ−1)

∂H(ℒ−2)

∂H(ℒ−2)

∂H(ℒ−3)

∂H(ℒ−3)

∂H(ℒ−4)

∂H(ℒ−4)

∂W(ℒ−4)

29

• We can write where

• We can iteratively compute so we don’t have to repeatedly calculate
the same terms

∂L
∂W(l)

= G(l) ∂H(l)

∂W(l)
G(l) =

∂L
∂H(ℒ)

∂H(ℒ)

∂H(ℒ−1)
…

∂H(l+1)

∂H(l)

G(l−1) = G(l) ∂H(l)

∂H(l−1)

The same terms keep cropping up
∂L

∂W(ℒ)
=

∂L
∂H(ℒ)

∂H(ℒ)

∂W(ℒ)

∂L
∂W(ℒ−1)

=
∂L

∂H(ℒ)

∂H(ℒ)

∂H(ℒ−1)

∂H(ℒ−1)

∂W(ℒ−1)

∂L
∂W(ℒ−2)

=
∂L

∂H(ℒ)

∂H(ℒ)

∂H(ℒ−1)

∂H(ℒ−1)

∂H(ℒ−2)

∂H(ℒ−2)

∂W(ℒ−2)

∂L
∂W(ℒ−3)

=
∂L

∂H(ℒ)

∂H(ℒ)

∂H(ℒ−1)

∂H(ℒ−1)

∂H(ℒ−2)

∂H(ℒ−2)

∂H(ℒ−3)

∂H(ℒ−3)

∂W(ℒ−3)

∂L
∂W(ℒ−4)

=
∂L

∂H(ℒ)

∂H(ℒ)

∂H(ℒ−1)

∂H(ℒ−1)

∂H(ℒ−2)

∂H(ℒ−2)

∂H(ℒ−3)

∂H(ℒ−3)

∂H(ℒ−4)

∂H(ℒ−4)

∂W(ℒ−4)

30

The backpropagation algorithm

• Goal: Obtain gradients

• Compute

• For in :

1. Compute and

2. Compute

∇θL = {(∂L
∂W(l))⊤, (∂L

∂b(l))⊤}ℒ
l=1

G(ℒ) =
∂L

∂H(ℒ)

l ℒ, ℒ − 1,…,2,1

∂L
∂W(l)

= G(l) ∂H(l)

∂W(l)

∂L
∂b(l)

= G(l) ∂H(l)

∂b(l)

G(l−1) = G(l) ∂H(l)

∂H(l−1)

See Murphy Section 13.3 for a more detailed and rigorous description!
31

SGD for neural network training

Storing lots of activations for a whole dataset can be expensive. Because
of this SGD is typically used for DNN training. The procedure is:

• Initialise DNN weights at random e.g. from a normal distribution

• For e in range(E):

• Split dataset into equal sized mini-batches at random

• For in range(B):

1. Compute using backpropagation

2. Update

X ∈ ℝN×D

{X(b), y(b)}B
b=1

b

∇θL(θ, X(b), y(b))

θ ← θ − α∇θL(θ, X(b), y(b)) Each outer loop across the
whole dataset is known as

an epoch
32

Other optimisers are available

• e.g. the Adam optimiser (pictured right)

• Almost all take the gradients from backprop and do 
something with them

• You don’t need to know about any optimisers other than GD and 
SGD for this course

33

DNNs can overfit

• DNNs can represent lots of functions. They are high capacity models

• They are very susceptible to overfitting!

• Remember, we care about a model’s ability to generalise to unseen data

• Regularisation is very important in DNNs!

34

Early stopping

• Fitting to the test set is not allowed

• We can however look at the
validation set throughout training
as a proxy

• The model starts to overfit once
validation loss stops decreasing
with train loss

• We can stop training at this point

This looks very similar to the last figure!

Over training models tend to underfit and
then overfit to the training data

35

Weight decay

• Models that overfit tend to have large weights

• To mitigate this, we multiply all the weights by whenever we perform an
update step in e.g. SGD

• is the amount of weight decay as is usually very small e.g.

• This is basically equivalent to having L2 regularisation in the loss function

1 − λ

λ 10−4

36

Why deep learning of all things?
• A benchmark in computer vision is classification performance on ImageNet

• It is a 1000-way classification task with 1 million training images

• For the 2012 ImageNet challenge:

The 2nd place model used handcrafted features and got 26.2% top 5-error

The 1st place model used a deep neural network and got 15.3% top 5-
error (& 36.7% top 1-error)

https://arxiv.org/pdf/1409.0575.pdf
37

AlexNet (2012)

• The winning entry. It’s split into two streams for 2 GPUs because of memory
constraints (that no longer exist :))

• 5 convolutional layers, 3 max pools (interspersed), and 3 linear layers

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

38

38

https://paperswithcode.com/sota/image-classification-on-imagenet

ImageNet top-1 accuracies

39

The transformer architecture (2017)

40
https://arxiv.org/abs/1706.03762

Vision transformers

https://arxiv.org/pdf/2010.11929v2.pdf 41

https://upload.wikimedia.org/wikipedia/commons/thumb/0/04/ChatGPT_logo.svg/1200px-ChatGPT_logo.svg.png

42

Why not use deep learning for everything?

• With enough data, DNNs beat other ML approaches for learning on images,
text, and audio data

• DNNs are often surpassed by decision tree-based models on tabular data

• DNN are near-impossible to interpret, so when this is required a linear model
is preferable

• DNNs need lots of data to train from scratch which we may not have!

• DNNs are very expensive to train

• We can however use their features for related tasks

https://arxiv.org/pdf/2207.08815.pdf
43

Summary

• We have considered learning our features instead of using a pre-existing map

• We have seen how the structure of a DNN facilitates feature learning

• We have looked at the MLP architecture and worked through some examples

• We have found out how to train an MLP using backpropagation + SGD

• We looked at different ways to regularise DNNs

44

The end (of the lectures)

• You have visualised and analysed data

• You have considered the ethical implications of deploying ML in society

• You have learnt about linear models for classification and regression

• You have learnt about non-parametric and non-linear models

• You have written code to use these models

I hope you enjoyed it!

45

