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Data Analysis and Machine 
Learning 4 (DAML)
Week 10: Deep Neural Networks
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• We looked at Gaussian processes for regression


• We saw how changing the kernel affected the GP prior and posterior

Recap
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Linear regression

• Given training data  ( , ) we can learn a model:


•  s.t. 


• We want  to map the data to a space where we can fit a hyperplane to it

{(x(n), y(n))}N
n=1 x ∈ ℝD y ∈ ℝ

f(x) = w⊤ϕ(x) + b y(n) ≈ f(x(n))∀n

ϕ

ϕ

ϕ(x) = x2
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(Binary) linear classifiers

• Given training data  ( , ) we can learn a model:


•  s.t. the hyperplane  separates the classes


• We want  to map the data to a space where classes can be separated by a 
hyperplane

{(x(n), y(n))}N
n=1 x ∈ ℝD y ∈ {0,1}

f(x) = w⊤ϕ(x) + b f(x) = 0

ϕ

ϕ(x) = [
∥x∥

tan−1 x1

x0
]

ϕ
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Multi-dimensional output 

• What if we want to perform multi-class classification or regress to a multi-
dimensional output ? 


 with  and 


becomes


  with with  and 


• We will assume this is the default output from now on as it is more general


f(x) ∈ ℝK

f(x) = w⊤ϕ(x) + b w ∈ ℝZ b ∈ ℝ

f(x) = Wϕ(x) + b W ∈ ℝZ×K b ∈ ℝK
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Feature learning

• Trying to design  for a new problem can be tedious or impossible!


• What if we could learn  directly from our training data?


• This is what deep learning entails. It’s feature learning! 

• We represent  as a parameterised function  and learn  jointly with  
and 

ϕ

ϕ

ϕ ϕθf
(x) θf W

b

f(x) = Wϕ(x) + b f(x) = Wϕθf
(x) + b

minimise
W,b

L minimise
θf ,W,b

L
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Deep neural networks (DNNs)

• These are non-linear models (traditionally) consisting of  functional layers





• The first  layers form a learnable feature map . These are known 
as hidden layers





• The last layer is (often) a linear transformation of the features


ℒ

f(x) = f (ℒ) ∘ f (ℒ−1) ∘ … ∘ f (2) ∘ f (1)(x)

ℒ − 1 ϕ(x)

ϕ(x) = f (ℒ−1)…f (2) f (1)(x)

f(x) = f (ℒ)(ϕ(x)) = W(ℒ)ϕ(x) + b(ℒ)

f (1) f (2) f (ℒ−1) f (ℒ)x f(x)ϕ(x)
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• A DNN takes the form





• An MLP is a network where each hidden layer output  is


 for 


• The layer input is the output of the previous layer 


• This undergoes a linear transformation 

• It then passes through a non-linear activation function 


f(x) = f (ℒ) ∘ f (ℒ−1) ∘ … ∘ f (2) ∘ f (1)(x)

h(l) ∈ ℝHl

h(l) = f (l)(h(l−1)) = g(W(l)h(l−1) + b(l)) l = 1,2,…, ℒ − 1

h(l−1) ∈ ℝHl−1

g
 is known as the pre-activation  

 is called an activation function and layer outputs  are called activations 

a(l) = W(l)h(l−1) + b(l)

g h(l)

The multilayer perceptron (MLP)

f (1) f (2) f (ℒ−1) f (ℒ)x f(x)h(1) h(ℒ−1)h(2) h(ℒ−2)

ϕ(x)
h(ℒ)
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Activation functions

• These make our function non-linear. Without them an MLP collapses into a 
single linear transformation


• They are element-wise functions which means each element of the input 
vector is individually transformed

g(z) = max(0,z)g(z) =
1

1 + e−z
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Two layer MLP

• For a 2 layer MLP with  and  we have:





 


• We can write the whole MLP as 

x ∈ ℝD f(x) ∈ ℝK

h(1) = g(W(1)x + b(1))

f(x) = W(2)h(1) + b(2)

f(x) = W(2)g(W(1)x + b(1)) + b(2)

The form of  and the 
dimensionality (or width) of 
the hidden layer are design 

decisions

g
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2 layer MLP (with pre-specified weights) for XOR
• We are going to walk through a 2 layer MLP solving a classification problem 

where the classes aren’t linearly separable


• We will use a ReLU activation and a hidden layer with a width of 2
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Layer 1: Compute the pre-activation

 where  and a(1) = W(1)x + b(1) W1 = [1 1
1 1] b1 = [ 0

−1]

Linear transform

The two class 1 points 
are now on top of each 

other
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Layer 1: Apply the non-linearity

.  This is ReLU so h = g(a) [
h(1)

1

h(1)
2 ] = [

max(0,a(1)
1 )

max(0,a(1)
2 )]

Non-linearity
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Layer 2: Just a linear classifier
.  Let’s just draw  


This gives us a non-linear decision boundary in the original space

f(x) = W(2)h(1) + b(2) f(x) = 0

Here, we have
 (a 

vector)and  (a 
scalar) because its binary 
classification but I’m using 
the more general matrix/
vector notation anyway

W2 = [1 −2]⊤

b2 = − 0.5

f(x) = 0
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• 


• 


•

h(1) = g(W(1)x + b(1))

h(2) = g(W(2)h(1) + b(2))

f(x) = W(3)h(2) + b(3)

3 layer MLP

x ∈ ℝ2 h(1) ∈ ℝ2 h(2) ∈ ℝ2

f(x) = 0

W(1) = [ 2.7 9.6
13.6 11.7]

b(1) = [−7.4
8.0 ]

W(2) = [−7.9 11.0
7.9 −9.9]

b(2) = [1.8
3.2]

The form of  and the width of the hidden layers 
are design decisions!

g

Credit to Oisin Mac Aodha for this example
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• 


• 


•

h(1) = g(W(1)x + b(1))

h(2) = g(W(2)h(1) + b(2))

f(x) = W(3)h(2) + b(3)

3 layer MLP

x ∈ ℝ2 h(1) ∈ ℝ2 h(2) ∈ ℝ2

f(x) = 0

W(1) = [ 2.7 9.6
13.6 11.7]

b(1) = [−7.4
8.0 ]

W(2) = [−7.9 11.0
7.9 −9.9]

b(2) = [1.8
3.2]
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• 


• 


•

h(1) = g(W(1)x + b(1))

h(2) = g(W(2)h(1) + b(2))

f(x) = W(3)h(2) + b(3)

Another 3 layer MLP

x ∈ ℝ2 h(1) ∈ ℝ100 h(2) ∈ ℝ2

f(x) = 0

W(1) ∈ ℝ100×2

b(1) ∈ ℝ100

W(2) ∈ ℝ2×100

b(2) ∈ ℝ2

?

We are increasing the width of the 1st hidden 
layer significantly here
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h(1) = g(W(1)x + b(1))

h(2) = W(2)h(1) + b(2)

Alternate view of a (2 layer) MLP

x1

x2

h(1)
1

h(1)
2

h(1)
3

h(2)
1

h(2)
2

• Sometimes you see MLPs drawn as graphs


• Here, the elements of 
 are represented by 

nodes


• Stuff is happening at the node inputs!


• It follows that , 


• And also that , 


• Sometimes these nodes are referred to as neurons


x ∈ ℝ2, h(1) ∈ ℝ3, h(2) ∈ ℝ2

W(1) ∈ ℝ3×2 b(1) ∈ ℝ3

W(2) ∈ ℝ2×3 b(1) ∈ ℝ2
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MLP: Layer 1 

h(1) =
h(1)

1

h (1)
2

h (1)
3

= g(W(1)x + b(1)) = g(

w(1)
1,1 w(1)

1,2

w(1)
2,1 w(1)

2,2

w(1)
3,1 w(1)

3,2

[
x1
x2] +

b(1)
1

b(1)
2

b(1)
3

) • Consider one of the neurons of 


• It receives a weighted sum of the input 
neurons, to which a bias is added


• This pre-activation goes into an activation 
function 


• If we are using ReLU activations 
 then the pre-activation must 

be positive to pass through


• If this happens we say that the neuron has 
been activated

h(1)

g

g(z) = max(0,z)
x1

x2

h(1)
1

h(1)
2

h(1)
3

w(1)
1,1

w(1)
3,2

+b(1)
1 g∑

w(1)
1,2 +b(1)

2 g∑

+b(1)
3 g∑

w(1)
3,1

w(1)
2,1

w(1)
2,2
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MLP: Layer 2 

h(2) = [
h(2)

1

h (2)
2 ] = W(2)h(1) + b(2) = [

w(2)
1,1 w(2)

1,2 w(2)
1,3

w(2)
2,1 w(2)

2,2 w(2)
2,3]

h(1)
1

h (1)
2

h (1)
3

+ [
b(2)

1

b(2)
2 ] • There is no activation function for the last 

layer in this example


• It’s just a matrix multiplied by a vector plus 
another vector 


• The previous layer was the same + a non-
linearity


w(2)
1,1

h(2)
1

+b(2)
1∑

https://www.reddit.com/r/machinelearningmemes/comments/hst89w/always_has_been/

h(2)
2

+b(2)
2∑

h(1)
1

h(1)
2

h(1)
3

w(2)
2,1

w(2)
1,2

w(2)
2,2

w(2)
1,3

w(2)
2,3
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Why MLPs?

• We’ve gone from learning your own features to a bunch of linear 
transformations + activation functions


• There is a practical reason: apart from the activation function it’s all just matrix 
multiplies which computers are very good at


• There is also theory in the form of a universal approximation theorem


• This basically tells us an MLP with at least 2 layers (and appropriate  can 
represent a wide range of functions when they have the right weights

g)

See https://www.deeplearningbook.org/contents/mlp.html 6.4.1 and  https://cognitivemedium.com/magic_paper/assets/Hornik.pdf 21

https://www.deeplearningbook.org/contents/mlp.html


Too good to be true?
Step 1: Use a 2 layer MLP to solve intelligence


Step 2: Use that to solve everything else


• The universal approximation theorem tells us an appropriate 2 layer MLP 
exists for lots of functions


• It doesn’t tell us how wide the hidden layer should be or what weights to use!


• To make things worse, losses involving DNNs are generally non-convex :(


• (But this isn’t actually that bad :) 

https://arxiv.org/pdf/1712.09913.pdf 22



Going deeper

• Empirically, deeper networks (those with more layers) tend to work better up 
to a certain point


• Now is good time to mention that deep learning is very empirical


• There are rules of thumb for e.g. the number of layers, layer widths


• However, often you need to try stuff out (or use existing models)

https://knowyourmeme.com/photos/531557-we-need-to-go-deeper
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Learning the parameters of a 2 layer MLP

• For  we can push a dataset  through a 2 layer MLP using 





 


• The learning process is very similar to that of linear models


• We pick an appropriate loss function  e.g. log loss for classification


• We then find the parameters that minimise the loss


• i.e. we solve  where 

x ∈ ℝD X ∈ ℝN×D

H(1) = g(XW(1)⊤ + 1 b(1)⊤)

H(2) = H(1)W(2)⊤ + 1 b(2)⊤

L

minimise
θ

L θ = {W(1), b(1), W(2), b(2)}

 is a vector of ones 1 ∈ ℝN
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The chain rule

• We can solve  for  using GD


• This involves computing gradients 


• We can obtain expressions for these using the chain rule

minimise
θ

L θ = {W(1), b(1), W(2), b(2)}

∇θL = {( ∂L
∂W(1) )⊤, ( ∂L

∂b(1) )⊤, ( ∂L
∂W(2) )⊤, ( ∂L

∂b(2) )⊤}

∂L
∂W(2)

=
∂L

∂H(2)

∂H(2)

∂W(2)

H(1) = g(XW(1)⊤ + 1 b(1)⊤)
H(2) = H(1)W(2)⊤ + 1 b(2)⊤

f (1) f (2)X H(1)
loss

W(1), b(1) W(2), b(2)

LH(2)

∂L
∂W(1)

=
∂L

∂H(2)

∂H(2)

∂H(1)

∂H(1)

∂W(1)

∂L
∂b(2)

=
∂L

∂H(2)

∂H(2)

∂b(2)

∂L
∂b(1)

=
∂L

∂H(2)

∂H(2)

∂H(1)

∂H(1)

∂b(1)

25

Warning! There be Jacobians. We aren’t going to delve into what these 
terms actually look like on this course.



Automatic differentiation 
• Computers can perform automatic differentiation (/auto-diff/autograd/magic)


• We don’t need to work out closed form expressions for any derivatives!
∂L

∂W(2)
=

∂L
∂H(2)

∂H(2)

∂W(2)

∂L
∂W(1)

=
∂L

∂H(2)

∂H(2)

∂H(1)

∂H(1)

∂W(1)

∂L
∂b(2)

=
∂L

∂H(2)

∂H(2)

∂b(2)

∂L
∂b(1)

=
∂L

∂H(2)

∂H(2)

∂H(1)

∂H(1)

∂b(1)
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Learning the parameters of an  layer MLPℒ

• For a dataset matrix  our  layer MLP is given by: 


 for 


•  and  is a non-linear activation function e.g. ReLU for all layers 
but the last, which is typically the identity function


• The loss function takes in  (and some labels/targets) and we want to 
solve  where 

X ℒ

H(l) = g(l)(H(l−1)W(l)⊤ + 1 b(l)⊤) l = 1,2,…, ℒ

H(0) = X g(l)

H(ℒ)

minimise
θ

L θ = {W(l), b(l)}ℒ
l=1

f (1) f (2) f (ℒ−1) f (ℒ)X
H(1) H(ℒ−1)H(2) H(ℒ−2) H(ℒ)

loss L

W(1), b(1) W(2), b(2) W(ℒ−1), b(ℒ−1) W(ℒ), b(ℒ) 27



More chain rule!

• To use GD we need to compute 


• We start with the last layer and can use the chain rule to write 


• These expression are very similar so I’ll just consider the  gradients for 
now, knowing we can obtain the  gradients in the same way

∇θL = {( ∂L
∂W(l) )⊤, ( ∂L

∂b(l) )⊤}ℒ
l=1

W
b

∂L
∂W(ℒ)

=
∂L

∂H(ℒ)

∂H(ℒ)

∂W(ℒ)

∂L
∂b(ℒ)

=
∂L

∂H(ℒ)

∂H(ℒ)

∂b(ℒ)

f (1) f (2) f (ℒ−1) f (ℒ)X
H(1) H(ℒ−1)H(2) H(ℒ−2) H(ℒ)

loss L

W(1), b(1) W(2), b(2) W(ℒ−1), b(ℒ−1) W(ℒ), b(ℒ) 28

See Murphy p435 if you’re curious about the transposes. 
Otherwise, don’t worry about them :)



What do you notice?
∂L

∂W(ℒ)
=

∂L
∂H(ℒ)

∂H(ℒ)

∂W(ℒ)

∂L
∂W(ℒ−1)

=
∂L

∂H(ℒ)

∂H(ℒ)

∂H(ℒ−1)

∂H(ℒ−1)

∂W(ℒ−1)

∂L
∂W(ℒ−2)

=
∂L

∂H(ℒ)

∂H(ℒ)

∂H(ℒ−1)

∂H(ℒ−1)

∂H(ℒ−2)

∂H(ℒ−2)

∂W(ℒ−2)

∂L
∂W(ℒ−3)

=
∂L

∂H(ℒ)

∂H(ℒ)

∂H(ℒ−1)

∂H(ℒ−1)

∂H(ℒ−2)

∂H(ℒ−2)

∂H(ℒ−3)

∂H(ℒ−3)

∂W(ℒ−3)

∂L
∂W(ℒ−4)

=
∂L

∂H(ℒ)

∂H(ℒ)

∂H(ℒ−1)

∂H(ℒ−1)

∂H(ℒ−2)

∂H(ℒ−2)

∂H(ℒ−3)

∂H(ℒ−3)

∂H(ℒ−4)

∂H(ℒ−4)

∂W(ℒ−4)
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• We can write where 


• We can iteratively compute  so we don’t have to repeatedly calculate 
the same terms

∂L
∂W(l)

= G(l) ∂H(l)

∂W(l)
G(l) =

∂L
∂H(ℒ)

∂H(ℒ)

∂H(ℒ−1)
…

∂H(l+1)

∂H(l)

G(l−1) = G(l) ∂H(l)

∂H(l−1)

The same terms keep cropping up
∂L

∂W(ℒ)
=

∂L
∂H(ℒ)

∂H(ℒ)

∂W(ℒ)

∂L
∂W(ℒ−1)

=
∂L

∂H(ℒ)

∂H(ℒ)

∂H(ℒ−1)

∂H(ℒ−1)

∂W(ℒ−1)

∂L
∂W(ℒ−2)

=
∂L

∂H(ℒ)

∂H(ℒ)

∂H(ℒ−1)

∂H(ℒ−1)

∂H(ℒ−2)

∂H(ℒ−2)

∂W(ℒ−2)

∂L
∂W(ℒ−3)

=
∂L

∂H(ℒ)

∂H(ℒ)

∂H(ℒ−1)

∂H(ℒ−1)

∂H(ℒ−2)

∂H(ℒ−2)

∂H(ℒ−3)

∂H(ℒ−3)

∂W(ℒ−3)

∂L
∂W(ℒ−4)

=
∂L

∂H(ℒ)

∂H(ℒ)

∂H(ℒ−1)

∂H(ℒ−1)

∂H(ℒ−2)

∂H(ℒ−2)

∂H(ℒ−3)

∂H(ℒ−3)

∂H(ℒ−4)

∂H(ℒ−4)

∂W(ℒ−4)
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The backpropagation algorithm

• Goal: Obtain gradients 


• Compute 


• For  in :


1. Compute  and 


2. Compute 

∇θL = {( ∂L
∂W(l) )⊤, ( ∂L

∂b(l) )⊤}ℒ
l=1

G(ℒ) =
∂L

∂H(ℒ)

l ℒ, ℒ − 1,…,2,1

∂L
∂W(l)

= G(l) ∂H(l)

∂W(l)

∂L
∂b(l)

= G(l) ∂H(l)

∂b(l)

G(l−1) = G(l) ∂H(l)

∂H(l−1)

See Murphy Section 13.3 for a more detailed and rigorous description!
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SGD for neural network training

Storing lots of activations for a whole dataset  can be expensive. Because 
of this SGD is typically used for DNN training. The procedure is:


• Initialise DNN weights at random e.g. from a normal distribution


• For e in range(E):


• Split dataset into equal sized mini-batches  at random


• For  in range(B):


1. Compute  using backpropagation 


2. Update 

X ∈ ℝN×D

{X(b), y(b)}B
b=1

b

∇θL(θ, X(b), y(b))

θ ← θ − α∇θL(θ, X(b), y(b)) Each outer loop across the 
whole dataset is known as 

an epoch
32



Other optimisers are available

• e.g. the Adam optimiser (pictured right)


• Almost all take the gradients from backprop and do 
something with them


• You don’t need to know about any optimisers other than GD and 
SGD for this course
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DNNs can overfit

• DNNs can represent lots of functions. They are high capacity models


• They are very susceptible to overfitting!


• Remember, we care about a model’s ability to generalise to unseen data


• Regularisation is very important in DNNs!

34



Early stopping

• Fitting to the test set is not allowed


• We can however look at the 
validation set throughout training 
as a proxy


• The model starts to overfit once 
validation loss stops decreasing 
with train loss


• We can stop training at this point

This looks very similar to the last figure! 

Over training models tend to underfit and 
then overfit to the training data
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Weight decay

• Models that overfit tend to have large weights


• To mitigate this, we multiply all the weights by  whenever we perform an 
update step in e.g. SGD


•  is the amount of weight decay as is usually very small e.g. 


• This is basically equivalent to having L2 regularisation in the loss function

1 − λ

λ 10−4

36



Why deep learning of all things?
• A benchmark in computer vision is classification performance on ImageNet


• It is a 1000-way classification task with 1 million training images 


• For the 2012 ImageNet challenge:


The 2nd place model used handcrafted features and got 26.2% top 5-error


The 1st place model used a deep neural network and got 15.3% top 5-
error (& 36.7% top 1-error)

https://arxiv.org/pdf/1409.0575.pdf
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AlexNet (2012)

• The winning entry. It’s split into two streams for 2 GPUs because of memory 
constraints (that no longer exist :) )


• 5 convolutional layers, 3 max pools (interspersed), and 3 linear layers 

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

38
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https://paperswithcode.com/sota/image-classification-on-imagenet

ImageNet top-1 accuracies
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The transformer architecture (2017)

40
https://arxiv.org/abs/1706.03762



Vision transformers

https://arxiv.org/pdf/2010.11929v2.pdf 41



https://upload.wikimedia.org/wikipedia/commons/thumb/0/04/ChatGPT_logo.svg/1200px-ChatGPT_logo.svg.png
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Why not use deep learning for everything?

• With enough data, DNNs beat other ML approaches for learning on images, 
text, and audio data


• DNNs are often surpassed by decision tree-based models on tabular data


• DNN are near-impossible to interpret, so when this is required a linear model 
is preferable


• DNNs need lots of data to train from scratch which we may not have!


• DNNs are very expensive to train


• We can however use their features for related tasks

https://arxiv.org/pdf/2207.08815.pdf
43



Summary

• We have considered learning our features instead of using a pre-existing map


• We have seen how the structure of a DNN facilitates feature learning


• We have looked at the MLP architecture and worked through some examples


• We have found out how to train an MLP using backpropagation + SGD


• We looked at different ways to regularise DNNs
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The end (of the lectures)

• You have visualised and analysed data


• You have considered the ethical implications of deploying ML in society


• You have learnt about linear models for classification and regression


• You have learnt about non-parametric and non-linear models


• You have written code to use these models

I hope you enjoyed it!
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