[J
Data Analysis
& Machine Learning

Data Analysis and Machine
Learning 4 (DAML)

Week 10: Deep Neural Networks

Q%> THE UNIVERSITY

Elliot J. Crowley, 25th March 2024 I
O of EDINBURGH

Recap

 We looked at Gaussian processes for regression

95% confidence bound

 We saw how changing the kernel affected the GP prior and posterior

Mean

95% confidence bound
e Training points

Validation points

Linear regression

 Given training data {(X(”‘),y("))}fy:1 (X € |

. f(xX) =wW'p(xX) + b sty = (x)Vn

D,yet

) we can learn a model:

» We want ¢ to map the data to a space where we can fit a hyperplane to it

@® training data

| — fix)
® transformed data

(Binary) linear classifiers

« Given training data {(X(’”,y(”))}sz1 (x € R”, y € {0,1}) we can learn a model:
. f(x) = W'@(X) + b s.t. the hyperplane f(x) = 0 separates the classes

« We want ¢ to map the data to a space where classes can be separated by a
hyperplane

¢(X) — —1 *

Multi-dimensional output

 What if we want to perform multi-class classification or regress to a multi-
dimensional output f(X) € | K2

X)) =w' p(x)+bwithw € R?and b € |

becomes

f(X) = Wa(X) + b with with W € R“*A and b € R*

 We will assume this is the default output from now on as it is more general

Feature learning

» Trying to design ¢ for a new problem can be tedious or impossible!

« What if we could learn ¢ directly from our training data?

* This is what deep learning entails. It’s feature learning!

. We represent ¢ as a parameterised function ¢9f(x) and learn Hfjointly with W
and b

f(x) = We(x) + b J(X) = Wehy(x) + b

minimise L
0, W.b

minimise L
W.b

Deep neural networks (DNNs)

« These are non-linear models (traditionally) consisting of &£ functional layers

f(x) = fL e fS Do o fO o fD(x)

» The first £ — 1 layers form a learnable feature map ¢(x). These are known
as hidden layers

p(x) =<0 P FOx)

* The last layer is (often) a linear transformation of the features

f(x) = fDAp(x0) = WEh(x) + b g0
X — [0 — @ e TV f(x)

7

The multilayer perceptron (MLP)

A DNN takes the form
fx) =f Do fZ Do o f@oflx)

 An MLP is a network where each hidden layer output h®) e |
h") = FOhD) = g(WORED 1 pDyfor [=1,2,..., L — 1

(1) 2) h(Z-2)
X — f(l) L f(2) h h > LD —s

* The layer input is the output of the previous layer h(=D g |

* This undergoes a linear transformation

* |t then passes through a non-linear activation function g

al) = WORD 4 bO js known as the pre-activation

g is called an activation function and layer outputs h"”) are called activations

Activation functions

 These make our function non-linear. Without them an MLP collapses into a
single linear transformation

* They are element-wise functions which means each element of the input
vector is individually transformed

Sigmoid activation function RelLU activation function
1.0 10 1
0.8 - 8 -
= 0.6 26

= =
3 0.4- > 4-
0.2- 5
0.0 - 0 -
-10 -5 0 5 10 -10 -5 0 5 10
input input
g(z) = g(z) = max(0,z)

1 +e%

Two layer MLP

. For a 2 layer MLP with x € R” and f(x) € R* we have:
AX) = WEhWD 4 p&)
. We can write the whole MLP as f(x) = WWg(WUx + b)) 4 @

The form of ¢ and the

dimensionality (or width) of
the hidden layer are design
decisions

2 layer MLP (with pre-specified weights) for XOR

* We are going to walk through a 2 layer MLP solving a classification problem
where the classes aren’t linearly separable

 We will use a RelLLU activation and a hidden layer with a width of 2

@® classO

2.0 W classl
1.5 1
1.0

x 0.51
0.0

—0.51

—1.0-

~10 -05 00 05 1.0 15 2.0
X

11

Layer 1: Compute the pre-activation

al) = Wx + b where W, = [1 1] and b, = [0]

2.0
1.5+
1.0+

x 0.54
0.0+
—0.51

—1.0-

~10 -05 00 05 1.0 15 2.0
X

1 1

Linear transform

2.0 A
1.5+
1.0+
Ergl 0.5
0.0
—0.5-

10

—1

The two class 1 points
are now on top of each
other

nh n
R O

~10 -05 00 05 10 15 2.0
(1)

12

h = g(a). Thisis RelLU so [

2.0 A
1.5
1.0 -

E{Q 0.5
0.0
—0.5 1

—1.0

B
a0

~1.0 -05 0.0 05
(1)

1.0 1.

2.0

lmax(o,a{U)

max(0,a5")

Non-linearity

2.0~

2~ 0.5-

0.0

_05 -

10

Layer 1: Apply the non-linearity

|

~1.0 -05 0.0 0.5

1.0 1.

2.0

13

f(x) = WHhW £ @) Let's just draw f(x) = 0

@ classO
B class1

fx) =0_

~1.0 -0.5

10 15 2.0

Layer 2: Just a linear classifier

This gives us a non-linear decision boundary in the original space

2.0 -
1.5+
1.0~
0.5-
0.0-
—0.51

—1.0+

Here, we have
W,=[1 -2]"(a
vector)and b, = — 0.5 (a
scalar) because its binary
classification but I’'m using

the more general matrix/
vector notation anyway

® classO
B class 1

~1.0 =05

10 15 2.0

3 layer MLLP

. h = g(Wx 4+ b))

. h® = g(WHhW

~10 5

. f(x) = WOR® 4 p®

1.0+
0.81
5 0.6
e
(2) 3 0.4
b) 0.21
0.01
0 5 10
put

1.5
® classO
B class1l
1.0- . S0 95‘ L
Y o ®
0.51 e . ®e
® "mPEE e
® O 'ﬂ
.lb | l .0
¢ 0o o Um g °
. W] = @
® me Ny g
O¢ = '
o
—0.5 - ’-J. l -
' % ol °
)
—1.0- .. e e ‘Q ‘
' o
~1.5 . .
—-1.5 —~1.0 —-0.5 0.0 0.5 1.0 1.5
X1
2
x € R

wO

The form of g and the width of the hidden layers
are design decisions!

Credit to Oisin Mac Aodha for this example

—-7.9 11.0
79 =99

2.7 9.6
13.6 11.7

WO —

—7.4 b2 —
3.0

1.0 i=== EE = & C X 1.0 i.. ® ® classO
I' B classl
i 0.8-
ool 0 o
0.6
E °
il 0.4 [
06. M | %
i
EN &N 0.2_
< <
0.4 0.0 1
0
8
—0.2
0.2
04
0 ® classO
0.0 !! m class1 —0.61
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
h(l) h(2)
1 1

15

3 layer MLLP

. h = g(Wx 4+ b))

. h® = g(WHhW

Sigmoid activation function

b2

. f(x) = WOR® 4 p®

—————

1.5
@ classO
B class1l
1.0- . Foo Qa‘ L
'Y J o ®
0.51 y ¥ - ®e
® imPEE e
o O o
0) u I .o
) °e i'm [l
< 0.0 * = i 5]
® me Ny g
0o = '
®
—0.5 - :F;‘ l ®
% ®
D
—1.0- “ e e ’Q J
0
~1.5 . | | |
-1.5 ~1.0 ~0.5 0.0 0.5 1.0 1.5
X1
2
x R

wO

2.7

9.6

13.6 11.7

—7.4
3.0

1.0- i|-,.=== =EE 2 e e PP
i
0gl O
i
[]
| m
067 m
2
0.4-
0
8
0.2-
0 @ classO
0.0 A !! B classl
0.0 0.2 0.4 0.6 0.8 1.0
hi®

1.0

0.8 -

0.6

0.4

0.0~

—0.2

04

06

11.0
—-9.9

@ classO
B class1

0.0

0.2

0.8 1.0

16

Another 3 layer MLP

. h = g(Wx 4+ b))

. h® = g(W@WhW 4 p©)

5 6

o

2

o 4+
2A
OA

ReLU activation function

W(l) = RIOOXZ

We are increasing the width of the 1st hidden

layer significantly here

W(2) = RZXIOO

— b e RIO b® € R?
. f(x) = WORA 1 p©3
1.5 T 14- @® classO
S (| B classl
1.0- Foo Qa‘ L 124 @
W - o o |
. : l.- P .d e ll
O O I °® 518
L 00 %o =Iii. 5" . < e
0 mE Ny g 6-
0o 5 ’
—0.5 1 o f==‘.'l a‘ 4 CrooN
~1.0- * e 0% ¢ 2
- O
04
215 10 -05 00 0.5 1.0 1.5 0.0 0.2 0.4 06 08 10
x € R? h(V ¢ R h® € R?

Alternate view of a (2 layer) MLP

h(D) — g(W(l)X n b(l)) e Sometimes you see MLPs drawn as graphs

e Here, the elements of
h® = W&hD 4 p& x € R2h(€ R3. h® e R2

nodes

are represented by

o Stuff is happening at the node inputs!

. It follows that W) € R**2 p\D) € R3

. And also that W® € R?%3 b)) € R?

e Sometimes these nodes are referred to as neurons

18

MLP: Layer 1

S L a 1] ()]
h(D wil wiz| o [bfP
1
1 1
h® = |AD | = g(WDOx +bD) = g(|ws) wi} x|+ 680
1 1 1 (1)
1 U] R)

n
1,1
(1)
o N7
0 X
(1)
° W3’1
(1)
W32
N

(D

Consider one of the neurons of h!

It receives a weighted sum of the input
neurons, to which a bias is added

This pre-activation goes into an activation
function g

If we are using Rel.U activations

2(2) = max(0,z) then the pre-activation must
be positive to pass through

If this happens we say that the neuron has
been activated

19

MLP: Layer 2

el W@ W W@ nPlpe1 e There is no activation function for the last
h® =" [=WOhO 4p@ = | - 0 gD | : .
. LECRCEIRT N N N S layer In this example
- 3 —

e |t’s just a matrix multiplied by a vector plus
another vector

e

W * The previous layer was the same + a non-
: @ inearity

1
L Always has been
(2) 4. '
2 A A Walt, It's all >,
x : AN hE
o \\‘\\'*\‘ Sr v : ? >
7 = R

2
A linear algebra?

| e
https://www.reddit.com/r/machinelearningmemes/comments/hst89w/always_has_been/ ,q

Why MLPs?

 We’ve gone from learning your own features to a bunch of linear
transformations + activation functions

* There is a practical reason: apart from the activation function it’s all just matrix
multiplies which computers are very good at

* There is also theory in the form of a universal approximation theorem

» This basically tells us an MLP with at least 2 layers (and appropriate g) can
represent a wide range of functions when they have the right weights

See https://www.deeplearningbook.org/contents/mlip.html 6.4.1 and https://cognitivemedium.com/magic_paper/assets/Hornik.pdf 51

https://www.deeplearningbook.org/contents/mlp.html

Too good to be true?

S:t‘e'p1: C—T War M P to solve intelllaenee
815692: o that to-solve-eveprtthina-else

* The universal approximation theorem tells us an appropriate 2 layer MLP
exists for lots of functions

* |t doesn’t tell us how wide the hidden layer should be or what weights to use!
* To make things worse, losses involving DNNs are generally non-convex :(

* (But this isn’t actually that bad :)

https://arxiv.org/pdf/1712.09913.pdf ,,

Going deeper

 Empirically, deeper networks (those with more layers) tend to work better up
to a certain point

P NEE? 1060

4
’

A

* Now Is good time to mention that deep learning is very empirical
* There are rules of thumb for e.g. the number of layers, layer widths

 However, often you need to try stuff out (or use existing models)

https://knowyourmeme.com/photos/531557-we-need-to-go-deeper

23

Learning the parameters of a 2 layer MLP

D

we can push a dataset X € RY*” through a 2 layer MLP using

* Forx €|
HD = g XWWT 4 1pDT
H? = HOW®OT L 1 p@T

1 € R" is a vector of ones

* The learning process is very similar to that of linear models

» We pick an appropriate loss function L e.g. log loss for classification

* We then find the parameters that minimise the loss

« i.e. we solve minimise L where @ = {W(l), b(l), W(Z), b(z)}
0

24

The chain rule

« We can solve minimise L for @ = {W(l), b(D, W) b(z)} using GD
0

C Thic . . - oL \- (OL \r / OL \. [OL \-
This involves computing gradients v,L = {(aw<1>> (abm) (aw<2>> (()b(2>> }

* We can obtain expressions for these using the chain rule

HO = gXWDT 4 1pD7)
H? = HOW®T 4 1p@7 oL oH® oL oL oH®

HW
— f(l) —>

aW<2> aH<2> IW 2 ob? JH® gb®2
(2)
I Iﬂ oL oH® oHV oL oL oH"® oH"
aw<1> ~ GH® 9HD oW ob() gH® oHD gh

Warning! There be Jacobians. We aren’t going to delve into what these
W(l) b W(z) b(®) terms actually look like on this course.

Automatic differentiation

 Computers can perform automatic differentiation (/auto-diff/autograd/magic)

 We don’t need to work out closed form expressions for any derivatives!
oL oL oH®@
OW®? gH® gW®
oL oL oH“” oH"
oW gH® gHD gWO)
oL oL oHY
b GH® gb® NOOOOILYOU

P CANT OPTIMISE NETWORKS
oL _ oL o~ oH wirhiourunpersranomcBAUTOGRADGOBRRR
obh) oH® gHD gb(D) MATRIXNCALCULUSI

26

Learning the parameters of an £ layer MLP

» For a dataset matrix X our £ layer MLP is given by:
HO = g(l)(H(l_l)VV(l)T +1bPNYforl=1.2,..., &

. HY = X and g(l) IS @ non-linear activation function e.g. ReLU for all layers
but the last, which is typically the identity function

. The loss function takes in H- (and some labels/targets) and we want to

solve minimise L where @ = { W, b(l)}g
— L

0
HOD H? HZ-2 H(Z-D)
W(l;, b(D W(Z)I, b® W= 1) b(Sf 1) W(Ef) b(Sf)

X —— f(l) - f(2) > f(5f—1) -,

A A

27

More chain rule!

Otherwise, don’t worry about them :)

oL oL
. 1o use GD we need to compute VL = { ()T, (—)T };Zl

oW ob(®)

* We start with the last layer and can use the chain rule to write
oL oL oHY oL oL oHY
W) JH) gW() ob?) H) 9b?)

« These expression are very similar so I’ll just consider the W gradients for
now, knowing we can obtain the b gradients in the same way

H(SZ)
—_— L

WO, WO p® WZ-1 b(Sf D W@, b(Sf)

(D) (2) (£-2) (Z-1)
X — £ L £ JHELAETT . LD H~

See Murphy p435 if you’re curious about the transposes.

28

What do you notice?

oL oL oH™)
W) GH gW @
oL oL oH®) oHWZ—D
OWZ-D — gH® gHZ-D gW(Z-1
oL oL oHY) oH“Z-D gH-—2)
IWZ-2) — JH@ gHZ-) gH(Z-2 gW(Z-2)
oL oL oHY) oH“Z~D ogHZ—2) gHZ)
oW (Z—3) B oHZ) oH(Z-1) oH(Z-2) gH(Z-3) gW(ZL-3)
oL oL oH“ oH“~D gH-“=2 gH“=3 gH~ ¥

W@ — JH@) gHZ-D gHZ-2 gHEZ-3) gH(Z—H gW(Z—4)

29

The same terms keep cropping up

oL oL oH™
WD)~ gH@ gWw@

oL oL oH“®) oHWD
OWZ-1) | gH@ gHZ-D) gW(Z-D

oL oL oHY) oH“~D gHZ—2)
OWZ-D | gH@ gHZ-D) gHZ-2) gW(Z-2)

oL oL oH“) oH-“-D gH-“—? ogH-—>
IWZ—3) . gH@ gHEZ-D gH(Z-2 gHZ-3) gW(Z—3)

oL oL oH“®) oH“-VD gH“=? gH~) gHZ Y
OWZ-D | gH@) gHE-D gHZ-2 gH(Z-3) gHZ—H gW (L4

oL oH® oL oH™ oH(+D
* We can write = G where G =
oW oW oH(Z) oH(=Z-1) oHO
oHWY

. We can iteratively compute G/~1 = G prry so we don’t have to repeatedly calculate

the same terms

The backpropagation algorithm

Goal: Obtain gradient VL—{ oL \1 (2L
. Goal: Obtain gradients VyL = <6W(l)) ,(m) }121

oL
oH(Z)
e Forlin&L, <L —1,...,2,1:

oL oHY oL oHY

= GV and — = G

oW) oW ob) ob)
dH(l)

JH(-D)

. Compute G*) =

1. Compute

2. Compute GV~ = GY

See Murphy Section 13.3 for a more detailed and rigorous description!
31

SGD for neural network training

NXD

Storing lots of activations for a whole dataset X € | can be expensive. Because
of this SGD is typically used for DNN training. The procedure is:

 |nitialise DNN weights at random e.g. from a normal distribution
* For e in range(E):
. Split dataset into equal sized mini-batches { X\?, y(b)}fj=1 at random
e For b in range(B):
1. Compute V,L(0, X y(b)) using backpropagation

2. Update O — 00—V 0 L(H’ X(b), y(b)) Each outer loop across the

whole dataset is known as
an epoch

32

Other optimisers are available

e e.9.the Adam optimiser (pictured right)

 Almost all take the gradients from backprop and do
something with them

* You don’t need to know about any optimisers other than GD and
SGD for this course

33

DNNSs can overfit

 DNNs can represent lots of functions. They are high capacity models
* They are very susceptible to overfitting!
» Remember, we care about a model’s ability to generalise to unseen data

 Regularisation is very important in DNNs!

--- train error
— test error

\
| Underfitting Overfitting
\

Error

Capacity

Early stopping

* Fitting to the test set is not allowed

e We can however look at the
validation set throughout training

as a proxy 0e

e The model starts to overfit once 0.4-

validation loss stops decreasing

with train loss go"?’_
= 0.2-
* We can stop training at this point
0.1-
0.0-

This looks very similar to the last figure!

Over training models tend to underfit and
then overfit to the training data

MNIST training for a 2 layer MLP

---= train loss
—— validation loss

\\
[
-~
-

35

Weight decay

 Models that overfit tend to have large weights

 To mitigate this, we multiply all the weights by 1 — A whenever we perform an
update step in e.g. SGD

« A is the amount of weight decay as is usually very small e.g. 10~

* This Is basically equivalent to having L2 regularisation in the loss function

36

Why deep learning of all things?

A benchmark in computer vision is classification performance on ImageNet
* |tis a 1000-way classification task with 1 million training images
* Forthe 2012 ImageNet challenge:
o The 2nd place model used handcrafted features and got 26.2% top 5-error

O The 1st place model used a deep neural network and got 15.3% top 5-
error (& 36.7% top 1-error)

https://arxiv.org/pdf/1409.0575.pdf

37

AlexNet (2012)

* The winning entry. It’s split into two streams for 2 GPUs because of memory
constraints (that no longer exist :))

* 5 convolutional layers, 3 max pools (interspersed), and 3 linear layers

3\{\:\\ 3 -1 3 > I
———————————— 3\\::\:—_____:_\ ’/ 3 [~
3| [
. 192 192 128 2048 2048 \dense
;128 R e
X AN 13 \ 13
3 _ AN
--------- 3|} 300 3|
oy 13 [T 3= T |13 dense| [dense
27 3\ [I\
3| .\ 1000
192 192 128 Max
: 2048 2048
Max. 128 Max pooling 38
pooling pooling

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436€924a68c45b-Paper.pdf

ImageNet top-1 accuracies

Leaderboard Dataset
View | Top 1 Accuracy vy by ' Date v for | All models A
100 _
Meta Pseudo Labels (EfficientNet-L2)ViT-G/14 CoCa (ﬁnetuned)
90 | st e LT ‘
ResNeXt-101 32x4gd | oisystudent (EfficientNet-87)
: PNASNet-5-8—— ,,
< ResNeXt-101 64x4—@——@ ~
§ 80 Incept“iqn_‘y3.: B
U -—
< VGG-19
— MSRA
n 70 | .
@ Five Base + Five"HiRes
- AlexNet »
60
50
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Other models

-0~ State-of-the-art models

https://paperswithcode.com/sota/image-classification-on-imagenet

39

OQutput
Probabilities

1

| Softmax

1

| Linear

m——

(
| Add & Norm J<=~

|
Feed
Forward

y | ——
s { ~\ | Add & Norm Je=~
|
L Add &lNorm) Multi-Head
Feed Attention
Forward t } N x
L f f /

I
| Add &INorm —\

Masked
Multi-Head
Attention

Nx | —(Add & Norm)

Multi- Head
Attention

. J
POSltIOnal Positional
Encodlng Encoding
Input [Output l
Embeddlng Embedding
I I
Inputs Outputs

(shifted right)

The transformer architecture (2017)

https://arxiv.org/abs/1706.03762

40

Vision transformers

Vision Transformer (ViT) Transformer Encoder

Class

Bird MLP]
Ball
Car ‘ Head

Transformer Encoder

i

|

|

|

|
’ ~ I

| r 1

| L J |
L | @<—

oy I 1
Pmnesane > @) 00 €0 6 @IB || e

|

|

|

0

* Extra learnable 4 A 4
[Norm]

[class] embedding Linear Projection of Flattened Patches

:
- 4
&

Embedded
Patches

https://arxiv.org/pdf/2010.11929v2.pdf 4

https://upload.wikimedia.org/wikipedia/commons/thumb/0/04/ChatGPT_logo.svg/1200px-ChatGPT_logo.svg.png

42

Why not use deep learning for everything?

* With enough data, DNNs beat other ML approaches for learning on images,
text, and audio data

 DNNs are often surpassed by decision tree-based models on tabular data

 DNN are near-impossible to interpret, so when this is required a linear model
IS preferable

 DNNs need lots of data to train from scratch which we may not have!

° D N NS are Very expensive _I:O trai n g% 10 Classification (15 datasets)) gé 1.0 Regression (19 datasets)

g':g 0 / Sfé
= 8=08 G . S 0% ‘
e We can however use their features for related tasks : *
N Z o7 5o 8Z
4 ®© O
Z 506 | Z 0o
S S
1Number of random search iterations Number of random search iterations

https://arxiv.org/pdf/2207.08815.pdf .5

Summary

 We have considered learning our features instead of using a pre-existing map
 We have seen how the structure of a DNN facilitates feature learning

 We have looked at the MLP architecture and worked through some examples
* We have found out how to train an MLP using backpropagation + SGD

 We looked at different ways to regularise DNNs

44

The end (of the lectures)

* You have visualised and analysed data

* You have considered the ethical implications of deploying ML in society
* You have learnt about linear models for classification and regression

* You have learnt about non-parametric and non-linear models

e You have written code to use these models

| hope you enjoyed it!

"You know;I'm somg’ghmg o)
almachine Ieaming@gpe,rt myself.”

A

45

