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Data Analysis and Machine 
Learning 4 (DAML)
Week 3: Preprocessing, PCA, clustering



Recap

• We reviewed summary statistics for datasets


• We considered different ways to visualise data
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This week 

• You will learn how to preprocess data so it can be used for various algorithms


• You will learn about principal component analysis (PCA) and how it can be 
used for dimensionality reduction


• You will find out how to cluster data using the K-means algorithm
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Preprocessing
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Matrix inputs

• PCA and many machine learning (ML) methods require a matrix input


• Our dataset must (usually) be represented by a matrix of real numeric values


• Discrete and continuous are both fine; we just pretend everything is continuous


• Given tabular data, we need to convert it into such a matrix

?
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Representing a dataset as a matrix

• We have tabular data with  data points (rows) and  features (cols)


• For now, we will drop features that don’t correspond to numeric variables


• If there are now  features we can represent the dataset by a  matrix

N C

D N × D

X =

185 32
193 70
147 77
163 26

X ∈ ℝN×D
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Representing data points as vectors

• We are representing our dataset using a  dataset matrix  


• Each row is a data point that lives in -dimensional space


• Let’s denote these as  or . They are vectors

N × D X

D

x(1), x(2), x(3), …, x(N) {x(n)}N
n=1

X =

185 32
193 70
147 77
163 26

X ∈ ℝN×D x ∈ ℝD

x(1)

x(2)x(3)

x(4)

Credit to Iain Murray for the notation 7



What if we have a missing (or wrong!) value for a feature?

• Option 1: Remove the affected data point(/s)


• Option 2: Impute a value (e.g. the average for that feature)
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X =

147 62 77
163 72 26
150 64 21
185 74 52

168
70

X =

168 80 32
193 70 60
147 62 77
163 72 26
150 64 21
185 74 52



What if we want to include categorical variables?

• If ordinal we can map to numbers that maintain order


• If nominal we can create a binary feature for each category
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X =

185 32 1
193 70 3
147 77 2
163 26 1

{‘Bachelors’: 1,

‘Masters’: 2,


‘PhD’: 3,}



Data points are column vectors 

• It is standard with tabular data to have the rows as data points


• But in ML literature it is convention to denote all vectors including data points 
 as column vectors 


• It is also convention to represent a dataset as  (in the same way 
we just did) where the rows are those data points


• Just be aware of this peculiarity!

x

X ∈ ℝN×D

X =

x(1)⊤

x(2)⊤

x(3)⊤

⋮
x(N)⊤

=

x(1)
1 x(1)

2 … x(1)
D

x(2)
1 x(2)

2 … x(2)
D

x(3)
1 x(3)

2 … x(3)
D

… … ⋱ ⋮
x(N)

1 x(N)
2 … x(N)

D

x(n) =

x(n)
1

x(n)
2
⋮

x(n)
D

x =

x1
x2
⋮
xD
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Why vectors?

• We can now use the machinery of linear algebra for PCA and ML


• Matrices linearly transform vectors


• Computers are very good at matrix multiplication 


• Neural networks consist of multiple matrices (See Week 10!)
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Can we represent other types of data as vectors?

• Yes! We can flatten or vectorise images 


• We can represent text data as a histogram of word counts (a bag of words) 
e.g. [ # “I”, # “like”, # “sausage”, # “hate”]

[ ]⊤

⊤

I like sausage sausage sausageI hate sausage

[1 1 1 0]⊤ [1 0 1 1]⊤ [0 0 2 0]⊤

[ ]
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Standardising your data

• Measurements of different features can have vastly different scales


• We want to compare features like-for-like and not let those with naturally large 
values dominate


• The solution is to standardise your data


• We want each column of  to have a mean of 0 and a SD of 1 X

X =

190 44 25000
143 36 29000
152 20 100000
178 56 67000

?
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Standardising your data

• We want each column of  to have a mean of 0 and a SD of 1 


• For each column, compute the mean and SD


• Then subtract the mean from each value and divide by SD


• This is essential for PCA and many ML algorithms

X

μj =
1
N ∑

n

x(n)
j

σ2
j =

1
N ∑

n

(x(n)
j − μj)2

Xnew =

x(1)
1 − μ1

σ1

x (1)
2 − μ2

σ2
…

x(1)
D − μD

σD

x(2)
1 − μ1

σ1

x (2)
2 − μ2

σ2
…

x(2)
D − μD

σD

… … ⋱ ⋮
x(N)

1 − μ1

σ1

x (N)
2 − μ2

σ2
…

x(N)
D − μD

σD

Xold =

x(1)
1 x(1)

2 … x(1)
D

x(2)
1 x(2)

2 … x(2)
D

… … ⋱ ⋮
x(N)

1 x(N)
2 … x(N)

D

I will use  to mean 

“sum over all ”  

∑
n

n
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Normalising vs. standardising

• Nomenclature can vary but in this course standardising refers to scaling 
each variable to zero mean and unit variance


• We can do other forms of scaling e.g. divide each variable by its maximum 
value


• We will refer to other forms of scaling as normalising 

• Generally, anything that gets different variables to similar ranges is fine just 
make sure you do it!
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If you have a bunch of 
binary variables you 
can just leave things 

alone! 



Principal Component Analysis 
(PCA)
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Motivation for PCA

• Most data is high dimensional


• This makes it hard to visualise patterns across a whole dataset

Tables with >3 columns

Time series with thousands of points

Images with millions of pixels
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Dimensionality reduction

• We could use a linear transform to reduce the dimensionality of our data 


•  with  transforms  (the rows of ) into  
(the rows of ) where  and 


• Then we could look at a scatter plot of  (if e.g. ) to see patterns


• But how do we know what the best transform is?

Z = XW W ∈ ℝD×d {x(n)}N
n=1 X {z(n)}N

n=1
Z x ∈ ℝD z ∈ ℝd

{z(n)}N
n=1 d = 2
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Minimising reconstruction loss

• Treat the matrix  as an encoder. We apply it to get to a low 
dimensional space  where 


• We can then apply its transpose to decode  where  

• The rows of :  are reconstructions of the data points 


• We should minimise the distance between points and their reconstructions so 
that  is a faithful low dimensional representation of the dataset

W ∈ ℝD×d

Z = XW Z ∈ ℝN×d

X̂ = ZW⊤ X̂ ∈ ℝN×D

X̂ {x̂(n)}N
n=1 {x(n)}N

n=1

Z

W W⊤
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Minimising reconstruction loss
• We should minimise the (average square) distance between points and their 

reconstructions 


• We also want the low dimensional features to be uncorrelated to 
minimise redundancy between features. This is achieved when  


• Overall we want to solve  s.t. 


• PCA gives us the solution to this

1
N ∑

n

∥x(n) − x̂(n)∥2 =
1
N ∑

n

∥x(n) − W⊤Wx(n)∥2

z1, z2, …
W⊤W = I

minimise
W

1
N ∑

n

∥x(n) − W⊤Wx(n)∥2 W⊤W = I

 for the dataset matrix means 
 for each column vector data 

point 

ZW⊤ = XWW⊤

W⊤z = WW⊤x
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Principal Component Analysis (PCA)

• For a standardised dataset , PCA returns a matrix 


• The columns of :  are the principal components of the data


• The matrix that solves  s.t.  

for  is 


• i.e. it’s the matrix whose columns are the first  principal components

X ∈ ℝN×D WPC ∈ ℝD×D

WPC {wd}D
d=1

minimise
W

1
N ∑

n

∥x(n) − W⊤Wx(n)∥2 W⊤W = I

W ∈ ℝD×d W = [w1 w2 … wd]

d

 for the dataset matrix translates to 
 for each column vector data point 

XWW⊤

WW⊤x
See Murphy 20.1.2 for the proof 

21



Computing principal components

To compute principal components for a standardised dataset :


1. Construct the covariance matrix 


2. Eigendecompose  to get eigenvalue, eigenvector pairs


3. Sort pairs by decreasing eigenvalue and denote as ,

X ∈ ℝN×D

Σ =
1
N

X⊤X

Σ

{λd}D
d=1 {wd}D

d=1

These vectors are

the principal components 22



PCA for dimensionality reduction

• PCA gives us  where 


• To reduce to  dimensions we can just keep the first  columns


• e.g.  would take our data to 2D using 

W ∈ ℝD×D W = [w1 w2 … wD]

d < D d

Wd=2 = [w1 w2] Z = XWd=2

Wd=2
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Minimising reconstruction error maximises variance

• PCA gives us the (linear) direction of maximum variance in 


• It gives us the (orthogonal) next largest direction of maximum variance in 


• And so on. This is neat, but to me, less intuitive than reconstruction error

z1

z2

Wd=2
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PCA for dimensionality reduction on irises

• The iris dataset contains 150 data points


• Let’s take the numeric columns to form a dataset matrix 


• Make sure that  is standardised 

X ∈ ℝ150×4

X
5.1 3.5 1.4 0.2
4.9 3.0 1.4 0.2
4.7 3.2 1.3 0.2
4.6 3.1 1.5 0.2
5.0 3.6 1.4 0.2… … … …
0.7 3.0 5.2 2.3
6.3 2.5 5.0 1.9
6.5 3.0 5.2 2.0
6.2 3.4 5.4 2.3
5.9 3.0 5.1 1.8

5.1 3.5 1.4 0.2
0.9 1.0 −1.3 −1.3

−1.1 −0.1 −1.3 −1.3
−1.4 0.3 −1.4 −1.3
−1.5 0.1 −1.3 −1.3
−1.0 1.2 −1.3 −1.3… … … …

.0 −0.1 0.8 1.4
0.6 −1.3 0.7 0.9
0.8 −0.1 0.8 1.1
0.4 0.8 0.9 1.4
0.1 −0.1 0.8 0.8
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PCA for dimensionality reduction on irises

• Use PCA to form 


• Now use  to project down to 2D


• Different species are distinguishable just by looking at 


• These new dimensions were found automatically

WPC ∈ ℝ4×4

Z = X [w1 w2]

z1

z1 = − 0.52x1 − 0.27x2 − 0.58x3 + 0.56x4

z2 = − 0.38x1 + 0.92x2 + 0.02x3 + 0.07x4
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PCA for dimensionality reduction on wine

• We have a red wine dataset 


• Each wine has also been scored by an expert between 0 and 10


• We can look at a few examples but it’s hard to get the full picture

X ∈ ℝ1599×11
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PCA for dimensionality reduction on wine

• Let’s standardise our data, and then use PCA to form 


• Now use  to project down to 2D

WPC ∈ ℝ11×11

Z = X [w1 w2]
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PCA for dimensionality reduction on wine

• We can see in this space that good wines tend to be near the bottom


• What makes a good wine? A negative  of course!z2
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Good wine recipe: make  negative z2

• The new dimensions are just linear combinations of the original dimensions


• In a lot of cases the new dimensions aren’t very intuitive 


• PCA is best used for exploratory data analysis

z2 = − 0.11x1 + 0.27x2 − 0.15x3 + 0.27x4 + 0.15x5 + 0.51x6 + 0.57x7 + 0.23x8 + 0.01x9 − 0.04x10 − 0.39x11
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Importance of components

• Performing PCA gives us eigenvalue, eigenvector pairs , 


• The eigenvectors are our principal components


• The eigenvalues are an importance weighting for each component


The first principal component explains  of the variance of the data

{λd}D
d=1 {wd}D

d=1

λ1

∑D
d=1 λd
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Importance of components

The first principal component explains   of the variance


It follows that the first  principal components account for  


Be careful throwing away dimensions if not enough variance is explained

λ1

∑D
d=1 λd

M
∑M

m=1 λm

∑D
d=1 λd
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Explaining variance of irises

1D: 73% 2D: 96% 3D: 99%
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Explaining variance of wine

1D: 28% 2D: 45% 3D: 60%
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Limitations: PCA is susceptible to outliers
Outliers can change the direction of maximum variance

WPC
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Limitations: PCA is linear
If the true direction of maximum variance isn’t a line, PCA can’t find it

W
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Clustering with K-means
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Motivation
You have a dataset that you want to split into groups


- people with low, medium, high income for marketing 


- grouping shoppers to recommend products


- identifying personality types for a dating website 
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K-means

• We can use K-means to automatically split our dataset in groups


• Other clustering algorithms are available!
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K-means algorithm

• Select the number of clusters 


• Initialise the cluster centres  at random


• Repeat:


1. Assign each (ideally standardised) data point to its nearest cluster centre


2. Update cluster centres as mean of their assigned points


• Until no change

K

{ck}K
k=1

Credit: Andrew Zisserman (for the slide idea, not the algorithm)
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K-means walkthrough with K = 3

Initialise the cluster centres  at random{ck}K
k=1 Assign each data point to its nearest cluster centre
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K-means walkthrough with K = 3

Update cluster centres as mean of their assigned points Assign each data point to its nearest cluster centre

And so on! 42



Warning!

• K-means is very sensitive to where the initial cluster centres are placed


• The number of clusters is user defined


• The clusters might not be meaningful

This data is just noise!
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Summary

• We have learnt how to preprocess data


• We have seen how PCA can be used for dimensionality reduction


• We have been introduced to K-means and how it can cluster data
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