
Elliot J. Crowley, 12th February 2024

Data Analysis and Machine 
Learning 4 (DAML)
Week 5: Linear models for regression



• We learned about supervised learning and looked at some examples


• We considered ethical issues that can arise when applying ML in society

Recap

image model category 
decision
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Supervised Learning
• We want a model that takes in a new data point and outputs a prediction


• For the model to be accurate it must first learn from training data


• Often, models are parameterised functions and learning = finding the best parameters 

• Training data is a set of existing data points that have been labelled


• The label says what the prediction for that data point should be 

new 
data model prediction
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Two canonical problems in supervised learning

• Regression: Given input data, predict a continuous output


• Classification: Given input data, predict a distinct category

cat dog
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Linear models for regression
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The regression problem

• Our training set consists of  data point-target pairs  


• Data points  are column vectors, targets (/labels)  are scalar


• We can use matrix/vector notation as in Week 3


• Objective: We want some function  such that  for each training 
point. This function is our regression model

N {(x(n), y(n))}N
n=1

x ∈ ℝD y ∈ ℝ

f f(x(n)) = y(n)

X =

x(1)⊤

x(2)⊤

x(3)⊤

⋮
x(N)⊤

=

x(1)
1 x(1)

2 … x(1)
D

x(2)
1 x(2)

2 … x(2)
D

x(3)
1 x(3)

2 … x(3)
D

… … ⋱ ⋮
x(N)

1 x(N)
2 … x(N)

D

y =

y(1)

y(2)

y(3)

⋮
y(N)
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Simple linear regression

• We have 1D measurements of mass-extension pairs 


• We want a model represented by  s.t.  for each point 


• Let’s fit a line and denote its outputs as 

{(x(n), y(n))}N
n=1

f f(x(n)) = y(n)

̂y

f(x) = ̂y = wx + b
 and  are the parameters of the model


 is called the weight and  is called the bias

w b

w b
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Our model predicts the targets

•  are predictions of our targets 


• We wanted a model  such that  for each point


• But we can’t achieve this: a line can’t perfectly fit the data here


• Can we relax our objective?

̂y(1), ̂y(2), …, ̂y(N) y(1), y(2), …, y(N)

f ̂y(n) = y(n)

f(x) = ̂y = wx + b
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The squared error loss function

• Let’s instead minimise the square distance between every  and : 



• In ML, given an objective, we typically construct a loss function


• This is a function of the model parameters and the data

̂y(n) y(n)

(y(n) − ̂y(n))2

LSE = ∑
n

(y(n) − ̂y(n))2

Our objective is achieved when the loss 
function is minimised
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Minimising squared error

• Let’s write  and  so 


• We want to find  that minimises 


• We can express this loss as a vector norm with some rewriting:

w = [b w]⊤ x = [1 x]⊤ f(x) = ̂y = w⊤x

w LSE(w) = ∑
n

(y(n) − w⊤x(n))2

X =

x(1)⊤

x(2)⊤

x(3)⊤

⋮
x(N)⊤

LSE(w) = ∥y − Xw∥2y =

y(1)

y(2)

y(3)

⋮
y(N)
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Vector calculus to the rescue

• Take the gradient and set to zero to get minimum


• And rearrange

LSE(w) = ∥y − Xw∥2 = (y − Xw)⊤(y − Xw)

∇wLSE = − 2X⊤(y − Xw) = 0

w* = (X⊤X)−1X⊤y

This function is convex: it only 
has one extremum which is a 

minimum

You are not required to do any vector or matrix calculus by hand on this course.  
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf is a useful reference for this however.
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A line of best fit

Compute  where 


 

w* = (X⊤X)−1X⊤y w* = [b* w*]⊤

This is the intercept and slope of a line that 
minimises the distances


 between target and predictions
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A probabilistic interpretation

• Let’s make the perfectly normal assumption 


• We would then want a model that maximises the probability of our targets 
across all our data points  a.k.a. the likelihood of our data


• Maximising likelihood is the same as minimising negative log-likelihood


• After a bit of maths we can write the negative log-likelihood as:


p(y |x) = 𝒩(y; w⊤x, σ2)

∏
n

p(y(n) |x(n))

NLL(w) =
1

2σ2 ∑
n

(y(n) − ̂y(n))2 +
N
2

log(2πσ2)

Minimising MSE loss is the 
same as maximising 

likelihood!
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Multiple linear regression

• We just performed simple linear regression, mapping 


• Multiple linear regression maps 


• Let’s predict petal width from the other three features in the iris dataset

ℝ → ℝ

ℝD>1 → ℝ

Our linear model is a weighted sum of the 
features plus a bias 


f(x) = ̂y = w1x1 + w2x2 + w3x3 + b
Petal width prediction

Sepal length Sepal width Petal length

14



• Our linear model is 


• We want to find the parameters  that minimise 


• Let’s write  and  


• This gives us  again


•  


• Same solution: 

f(x) = ̂y = w1x1 + w2x2 + w3x3 + b

w1, w2, w3, b LSE = ∑
n

(y(n) − ̂y(n))2

w = [b w1 w2 w3]⊤ x = [1 x1 x2 x3]⊤

f(x) = ̂y = w⊤x

LSE = ∑
n

(y(n) − ̂y(n))2 = ∥y − Xw∥2

w* = (X⊤X)−1X⊤y

Minimising squared error (again!)
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Model evaluation: Mean squared error

• We could look at a plot our predictions  against the targets 
 but it’s nice to summarise performance using a score


• That score could be the mean squared error 

̂y(1), ̂y(2), …, ̂y(N)

y(1), y(2), …, y(N)

LMSE =
1
N ∑

n

(y(n) − ̂y(n))2

MSE is the average of the distances 
between predictions and targets 

Here MSE is 0.03586. Low is good

Warning! MSE depends on the scale of 
your data
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Model evaluation: Coefficient of Determination R2

•  is the default score for regression in sklearn


• It is 1 minus the reduction in error when you use your model’s prediction 
instead of the mean of the targets 


• It is maximally 1 (which is best) and can be negative if your predictions are 
worse than using the target mean!


• It can be seen as a measure of how much of the variance in the targets is 
explained by the model

R2

R2 = 1 −
∑n (y(n) − ̂y(n))2

∑n (y(n) − ȳ)2
Mean y
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Machine Learning is…

“the study of algorithms that can learn from 
training data in order to make predictions 
on new data.”
Elliot J. Crowley
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Test set 

• We ultimately want our model to do well on new data 

• Models should be evaluated on data that wasn’t used for training


• Solution: Evaluate model on a test set (can split dataset into train/test)


• A model that can perform well on test is able to generalise 

• The test set must never be used to fit the model

A model that performs 
badly on the test set is 

rubbish!
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Evaluation

• Let’s split the iris dataset into 80% training and 20% test at random


• Learn weights on train, apply to test 


• Train MSE: 0.03536 and Test MSE: 0.03906


• Train : 0.9409 and Test :  0.9179R2 R2
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How do we interpret the model?

• With linear models, the weights tell you the contribution of each variable to 
the prediction


• But this isn’t simple to interpret if the data isn’t standardised 

w =

b
w1
w2
w3

=

−0.32
−0.18
0.21
0.52

̂y = − 0.18x1 + 0.21x2 + 0.52x3 − 0.32

Variables have their own scales!

Petal width prediction Sepal length Sepal width Petal length
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Standardised results

• We compute the variable means and standard deviations on the training set


• Then apply these to the training set and the test set! 

• The learnt weights are now simple to interpret 

̂y = − 0.15x1 + 0.09x2 + 0.92x3 + 1.17
Petal width prediction Standardised


Sepal length
Standardised

Sepal width

Standardised

Petal length
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• Consider the 1D training set of data-target pairs below 


• The relationship between data and targets is curvilinear


• Simple linear regression produces a model that underfits to the data


• The model doesn’t have the capacity to capture the way the data varies

{(x(n), y(n))}N
n=1

Polynomial regression
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Polynomial regression

• Let’s try fitting a polynomial 


• Using  we have   and can get a good fit


• The model is still linear in the weights

̂y = f(x) = b +
M

∑
m=1

wmxm

M = 3 f(x) = b + w1x + w2x2 + w3x3
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How do we fit this function?

• Our function is 


1. Define 


2. Write  

• We get . This looks familiar… 


• It’s the same as before except we have a feature transformation 

̂y = f(x) = b +
M

∑
m=1

wmxm

ϕ(x) = [1 x x2 … xM]⊤

w = [b w1 w2 … wM]⊤

f(x) = ̂y = w⊤ϕ(x)

ϕ(x)
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• Our linear model is 


• We want to find the  that minimise 


• Define then we get 


• Extremely similar solution: 

f(x) = ̂y = w⊤ϕ(x)

w LSE = ∑
n

(y(n) − ̂y(n))2

Φ =

ϕ(x(1))⊤

ϕ(x(2))⊤

ϕ(x(3))⊤

⋮
ϕ(x(N))⊤)

LSE = ∑
n

(y(n) − ̂y(n))2 = ∥y − Φw∥2

w* = (Φ⊤Φ)−1Φ⊤y

Minimising squared error (yet again)

View  and  as interchangeable here.  
It depends if we have a feature 

transformation or not

Φ X
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Varying M
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• These models have overfit to the training data


• We want our models to generalise to test data —these don’t!


• Spoilers: 


•  The models have too much capacity, and are latching on to the noise

y = sin((x − a)/b) + 𝒩(0,0.252)

Overfitting
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Regularisation

• We ultimately want to maximise test performance i.e. minimise test error


• The model should have the capacity to represent the function we care about


• But high capacity models tend to overfit 


• Regularisation techniques combat overfitting by making the model simpler 

This figure is my reproduction of Figure 5.3 from https://www.deeplearningbook.org/contents/ml.html
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L2 regularisation

• Overfitted models tend to have large weights


• We can regularise our model by penalising large weight values


• Let’s add a term to our loss function that is small when weights are small

y = 30.38x19 − 18.83x18 − 313.41x17 + …

Lridge(w) = ∥y − Φw∥2

SE

+ λ∥w∥2

regularisation

Probabilistic interpretation: We 
are placing a Gaussian prior on 

the weights and performing MAP 
inference
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Ridge regression

 where 


•  is a hyperparameter that tells us how important regularisation is


• Let’s take the gradient and set to zero to get the optimal weights 

Lridge(w) = ∥y − Φw∥2

SE

+ λ∥w∥2

regularisation

∥w∥2 = w⊤w

λ

∇wLridge = − 2Φ⊤(y − Φw) + 2λw = 0

w* = (Φ⊤Φ + λI)−1Φ⊤y

This function is convex: it 
only has one extremum 

which is a minimum

But in practice, we don’t 
regularise the bias term. 
Sklearn will deal with this 

for you
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Varying  for λ M = 19
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The validation set

• Our goal is to perform well on the test set. Can we try different values of  and 
pick the one that maximises test performance?


• No! This would be using the test set to select the model 

• Instead, we split the dataset three-ways: train, validation, test


• The validation set is used for model selection


• i.e. we can evaluate models with different  and select the one that does best 
on validation

λ

λ

Sometimes we will just use default hyperparameter 
values however
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Hyperparameter tuning with grid search

• Create a list of  values and for each value fit a model on the training set


• Evaluate each model on the validation set (e.g. with MSE or )


• Select the model that performs best on validation then evaluate on test

λ

R2
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Grid search

• We create a grid of possible values for each hyperparameter


• We then train a model for each grid element, and pick the model that 
performs best on the validation set. This is model selection


• With one hyperparameter, the grid is 1D, with two it’s 2D and so on


• This can quickly get very expensive!

Imagine we have 
hyperparameters  and .


Let’s search over  
and 

α β
α = {0,1}

β = {0.1,1,10}

R2
val = 0.46α = 0

α = 1

β = 0.1 β = 1 β = 10

R2
val = 0.52 R2

val = 0.39

R2
val = 0.73 R2

val = 0.87 R2
val = 0.79

35



Other feature transformations are available 

• We can design our own ;  is often referred to as the design matrix


• Each element could be a Gaussian centred on each training point 


 


• Here,  is an additional hyperparameter

ϕ(x) Φ

ϕ(x) = [e−(x−x(1))2/σ2 e−(x−x(1))2/σ2 e−(x−x(2))2/σ2 … e−(x−x(N))2/σ2]⊤

σ
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Lasso regression

• Very similar to ridge regression except the SE term has been scaled and the 
regularisation term is a 1-norm


• 1-norm encourages sparsity in  which is a form of feature selectionw

Llasso(w) =
1

2N
∥y − Xw∥2

MSE

+ λ |w |
⏟

regularisation

The minimum occurs at one of the points where 
the contours of the two terms are at a tangent 

Such points are more likely to occur at the 
corners of the 1-norm contours

Remember that we can 
interchange  and  in these 

equations
Φ X

Probabilistic interpretation: We are placing a 
Laplace prior on our weights 
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Optimisation

• Finding the weights that minimise a loss function on training data is an 
optimisation problem  with solution 


• This was simple for  which is convex and differentiable


• We just compute  and set to zero


• However,  is non-differentiable

minimise
w

L(w) w* = arg min
w

L(w)

Lridge(w)

∇wLridge

Llasso(w)

Llasso(w) =
1

2N
∥y − Φw∥2

MSE

+ λ |w |
⏟

regularisation
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Convexity

• Convex functions have one extremum which is a minimum. This is very useful 
for optimisation!


• A function of one variable is convex if a line drawn between any two points on 
the function doesn’t fall below the function
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Lasso is convex

•  is convex (as is ): it clearly has a minimum at . 


• It not being differentiable doesn’t change this


• The sum of two convex functions is convex


•  is convex, we just need to find its minimum

|w | |w | w = 0

Llasso(w)

Llasso(w) =
1

2N
∥y − Φw∥2

MSE

+ λ |w |
⏟

regularisation
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Subderivatives

•  is piecewise differentiable


• We can evaluate the gradient at any point (except )


• This is all we need to do to perform gradient descent (GD)

g(w) = |w |

w = 0

dg
dw

= {1 if w > 0
−1 if w < 0
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Gradient descent (GD) intuition

• We have a function  and we want to find 


• Let’s initialise  at random and call it 


• The gradient at  :  tells us locally the direction we can move 
 to most increase the function


• Move in the opposite direction!


L(w) w* = arg min
w

L(w)

w wt=0

wt=0 ∇wL(wt=0)
wt=0

wt=1 = wt=0 − α∇wL(wt=0)
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Gradient descent (GD) rationale

• Consider the loss at : 


• Let’s take a small step in weight space, so 


• Because this is small we can approximate  using a 1st order Taylor 
expansion


• 


• If we set  then  as long as  is small


• We can therefore keep taking steps to minimise loss

wt=i L(wt=i)

wt=i+1 = wt=i + Δ

L(wt=i+1)

L(wt=i+1) = L(wt=i + Δ) ≈ L(wt=i) + ∇wL(wt=i)⊤Δ

Δ = − α∇wL(wt=i) L(wt=i+1) ≤ L(wt=i) α
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Gradient descent (GD) algorithm

Goal: We have a function  and we want to find 


• Initialise  as 


• For  in range(T):


1. Compute 


2. Update 

L(w) w* = arg min
w

L(w)

w wt=0

i

∇wL(wt=i)

wt=i+1 = wt=i − α∇wL(wt=i)

 is called the step size, or learning rate 

It is yet another hyperparameter

α
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Optimisation algorithms

• Using an optimisation algorithm to learn the weights that minimise a loss 
function on training data is known as training or fitting or learning!


• There are many optimisation algorithms; some work better than others for 
different methods


• We will only detail variations of gradient descent on this course


• Sklearn will default to whatever optimiser tends to work best for a method


• Please be happy using optimisation algorithms that you haven’t learnt about, 
and if you’re not — go find out how they work!

45



Summary

• We have learnt about linear regression


• We have reasoned about the need for a test set for evaluation


• We have discovered how regularisation can prevent overfitting


• We have learnt how a validation set can be used to perform model selection


• We have found out what convex functions are


• We have explored gradient descent for optimising convex functions
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