®
DEIEWAENIS
& Machine Learning

Data Analysis and Machine
Learning 4 (DAML)

Week 5: Linear models for regression

Q%> THE UNIVERSITY

Elliot J. Crowley, 12th February 2024 I
O of EDINBURGH




Recap

* We learned about supervised learning and looked at some examples
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Supervised Learning

 \We want a model that takes in a new data point and outputs a prediction

new -
data —bm—b prediction

* For the model to be accurate it must first learn from training data
» Often, models are parameterised functions and learning = finding the best parameters
* Jraining data is a set of existing data points that have been labelled

* The label says what the prediction for that data point should be



Two canonical problems in supervised learning

 Regression: Given input data, predict a continuous output

—— function
® @ training data




Linear models for regression



The regression problem

. Our training set consists of N data point-target pairs {(x"", y(”))}f;’:l

D

« Data points X € IR™ are column vectors, targets (/labels) y € IR are scalar

 \WWe can use matrix/vector notation as in Week 3
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. Objective: We want some function f such that f(x") = y™ for each training
point. This function is our regression model



Simple linear regression

« \We have 1D measurements of mass-extension pairs {(x(”), y(”))}fy:l

. We want a model represented by f's.t. f(x"™) = y™ for each point

» Let’s fit a line and denote its outputs as y

fx)=y=wx+0>
w and b are the parameters of the model

w is called the weight and b is called the bias

y (extension)
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Our model predicts the targets

* y(l), A(z), ey PV are predictions of our targets y(l), y(z)’ s y(N)

» We wanted a model f such that W) = v for each point

 But we can’t achieve this: a line can’t perfectly fit the data here

* Can we relax our objective? Extension vs. mass for a spring
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The squared error loss function

. Let’s instead minimise the square distance between every ™ and y":
(y(”) _ A(n))Z

* |In ML, given an objective, we typically construct a loss function

* This is a function of the model parameters and the data
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Minimising squared error

o Let’s write w = |p W]T and X = [ 1] x]T sof(X) =y = w'x

» We want to find w that minimises L¢ (W) = Z (y(”) — WTX(n))2

n

* We can express this loss as a vector norm with some rewriting:

y(D x(DT
Y@ xT
y=[y® X = | @®T Lop(W) = ||y — Xw||?

Y KT
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Vector calculus to the rescue

Lop(w) = [ly — Xw||* = (y — Xw) " (y — Xw)

This function is convex: it only

* Jake the gradient and set to zero to get minimum has one extremum which is a
minimuim 60

oooooooooooooooo

V. Lo =—2X"(y — Xw) =0

 And rearrange

w = (X'X)" X'y

You are not required to do any vector or matrix calculus by hand on this course.
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf is a useful reference for this however.
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A line of best fit

Compute w* = (X'X)" !XTy where w* = [p* wi]!'

This Is the intercept and slope of a line that
minimises the distances
between target and predictions
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A probabilistic interpretation

T

. Let’s make the perfectly normal assumption p(y | X) = A (y; w'x, 6?)

 We would then want a model that maximises the probability of our targets
across all our data points H p(y™ | x") a.k.a. the likelihood of our data

n

 Maximising likelihood is the same as minimising negative log-likelihood

o After a bit of maths we can write the negative log-likelihood as:
1

NLL(w) =
(W) e

N
Z (y(”) — $my2 4 E log(2ﬂ02)

Minimising MSE loss is the
same as maximising
likelihood!




 We just performed simple linear regression, mapping K — |

e Multiple linear regression maps |

Multiple linear regression

D>1—>|R

e |et’s predict petal width from the other three features in the iris dataset

sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) species
0 5.1 3.5 1.4 0.2 setosa
1 4.9 3.0 1.4 0.2 setosa
2 4.7 3.2 1.3 0.2 setosa
3 4.6 3.1 1.5 0.2 setosa
4 5.0 3.6 1.4 0.2 setosa
145 6.7 3.0 5.2 2.3 virginica
146 6.3 2.5 5.0 1.9 virginica
147 6.5 3.0 5.2 2.0 virginica
148 6.2 3.4 5.4 2.3 virginica
149 5.9 3.0 5.1 1.8 virginica

Our linear model is a weighted sum of the
features plus a bias

Sepal length Sepal width Petal length
f(X) =Yy = WX + Wr X9 + W3X3 + b

Petal width prediction
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Minimising squared error (again!)

 Our linear model is f(X) =y = wix; + WoX, + Wwaxy + b

 We want to find the parameters wy, w,, w;, b that minimise Ly = Z () — $0)y2

n
* Let’s write w = [b W W, Wg]TandX = [1 A XA XB]T

+ Thisgivesusf(X) =9 =w'

o L= Y ™ =52 = |ly — Xw]|?

X again

. Same solution: w* = (X'X)" Xy
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Model evaluation: Mean squared error

SV)

 We could look at a plot our predictions y(l) A(z) . against the targets
y(l) y(z) ees y(N ) but it’s nice to summarise performance using a score
_ (n) _ 5(n))2
. That score could be the mean squared error L, = Z (y y)
n
Actual vs. predicted petal widths
| o predices 3 ':'.-'[ X :""“ MSE is the average of the distances
2.0- . 2 S s between predictions and targets
%‘J - ":CF'."%;?‘ f;:‘..._. T Here MSE is 0.03586. Low is good
" NS .':‘::;u afes Warning! MSE depends on the scale of
e ~® your data
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Model evaluation: Coefficient of Determination R 2

. R? is the default score for regression in sklearn

e |t is 1 minus the reduction in error when you use your model’s prediction
instead of the mean of the targets

() _ )2
e 2., )

* |t is maximally 1 (which is best) and can be negative if your predictions are
worse than using the target mean!

* |t can be seen as a measure of how much of the variance in the targets is
explained by the model
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Machine Learning Is...

“the study of algorithms that can learn from
training data in order to make predictions
on new data.”

Elliot J. Crowley



Test set

* We ultimately want our model to do well on new data
 Models should be evaluated on data that wasn’t used for training
o Solution: Evaluate model on a test set (can split dataset into train/test)

A model that can perform well on test is able to generalise

e The test set must never be used to fit the model

A model that performs
badly on the test set is

rubbish!



Evaluation

* |Let’s split the iris dataset into 80% training and 20% test at random

* | earn weights on train, apply to test

* Train MSE: 0.03536 and Test MSE: 0.03906

e Train R?%: 0.9409 and Test R%: 0.9179

Petal Width

Actual vs. predicted petal widths on test set
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How do we interpret the model?

b —0.32

W — Wi _ —0.18
[4%) 0.21
W3 0.52

$ = —0.18x, + 0.21x, + 0.52x; — 0.32

Petal width prediction Sepal length Sepal width Petal length

 With linear models, the weights tell you the contribution of each variable to
the prediction

 But this isn’t simple to interpret if the data isn’t standardised

Variables have their own scales!
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Standardised results

* \We compute the variable means and standard deviations on the training set
 Then apply these to the training set and the test set!

* The learnt weights are now simple to interpret

§ = —0.15x, 4+ 0.09x, + 0.92x; + 1.17

Standardised Standardised Standardised

Petal width prediction Sepal length Sepal width Petal length
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Polynomial regression

. Consider the 1D training set of data-target pairs below{ (x""", y(”))}fy:l

* The relationship between data and targets is curvilinear
 Simple linear regression produces a model that underfits to the data

 The model doesn’t have the capacity to capture the way the data varies

2 2
—— function
. o ¢ . o o ® training data
® P9 ©
® e
~ 04 @ ~ 0
® ®
@ ( X )
-1 e -1
o0
—2 —2




Polynomial regression

M
e Let’s try fitting a polynomial y = f(x) = b + Z w, X"
m=1

* Using M = 3 we have f(x) =b+ wx + w2x2 + w3x3 and can get a good fit

* The model is still linear in the weights

2 2
—— function
. o ¢ . o ¢ ® training data
® P9 ©
® e
~ 04 @ >~ 0
® ®
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How do we fit this function?

M
* Our functionisy = f(x) = b + Z w, X"

m=1

1. Define ¢(X) = [1 x x* ... XM]T

- SRS 1 AM ONCE AGAIN ASKING YOU TO
M] 'EXPRESS THIS FUNCTION AS A DOT PRODUCT

2. Write w = [b Wi Wy . W

. We get f(x) = § = w' ¢(X). This looks familiar...

e It’s the same as before except we have a feature transformation ¢(X)
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Minimising squared error (yet again)

» Our linear model is f(X) = § = W' @(x)

» We want to find the w that minimise L¢, = Z (y(”) — $0)?

n

p(xD)!

px)T
- Define ® = | 4(x®)T |thenwe get Lz = ) (/) = 5" = |ly — w3

(NNT
X
¢( ) ) View @ and X as interchangeable here.

« Extremely similar solution: w* = ((I)T(I))_l(I)Ty It depends if we have a feature
transformation or not
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Overfitting

 These models have overfit to the training data

 We want our models to generalise to test data —these don’t!

. Spoilers: y = sin((x — a)/b) + #7(0,0.25%)

>

The models have too much capacity, and are latching on to the noise
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Regularisation

* We ultimately want to maximise test performance i.e. minimise test error

 The model should have the capacity to represent the function we care about

* But high capacity models tend to overtfit

 Regularisation technigues combat overfitting by making the model simpler

Error

|\ Underfitting
\

-- train error
— test error

Overfitting

Capacity
This figure is my reproduction of Figure 5.3 from https://www.deeplearningbook.org/contents/ml.html
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L2 regularisation

* QOverfitted models tend to have large weights

~ 01 ¢

- y = 30.38x"” — 18.83x!% - 313.41x'" + ...

—— function
@® training data
I 11

—2 ~1 0 1 2
X

* We can regularise our model by penalising large weight values

* |et’s add a term to our loss function that is small when weights are small

(W) = Hy (I)WH2 +  Al|lw ”2 Probabilistic interpretation: We
are placing a Gaussian prior on

the weights and performing MAP
inference

rldge

—~ Y

SE regularzsatzon
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Ridge regression

(W) = Hy <I>WH2+ Allwll*  where [[w]|* = w'w

— — This function is convex: it

SE regularlsatlon only has one extremum
which is a minimum

rzdge

A is a hyperparameter that tells us how important reqularisation is

o |et’s take the gradient and set to zero to get the optimal weights

V., L. = 2P (y — ®dw) + 2w = 0

idge
But in practice, we don’t

wk — ((I)T(I) + 2 I)—l(I)Ty regularise the bias term.

Sklearn will deal with this
for you
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Varying 4 for M = 19
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The validation set

» Our goal is to perform well on the test set. Can we try different values of A and
pick the one that maximises test performance?

 No! This would be using the test set to select the model

* |nstead, we split the dataset three-ways: train, validation, test

e The validation set is used for model selection

e i.e. we can evaluate models with different A and select the one that does best
on validation

Sometimes we will just use default hyperparameter
values however
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Hyperparameter tuning with grid search

« Create a list of A values and for each value fit a model on the training set

e Evaluate each model on the validation set (e.g. with MSE or Rz)

* Select the model that performs best on validation then evaluate on test

A=0.1, Train MSE =0.007, Val MSE=0.016

— function

® training data
® validation data

Loss curves for training and validation sets

0.30 4 —— training
0254 validation

0.20
N
) 7. —5. | -2. x ) ) ) (é) 015 i
A =10, Train MSE =0.071, Val MSE=0.057
101 f“”_.Ct,ioln o ., ° 0.10-
' 0.05 -
0.00 -

l0g10A




Grid search

 We create a grid of possible values for each hyperparameter

 We then train a model for each grid element, and pick the model that
performs best on the validation set. This is model selection

* With one hyperparameter, the grid is 1D, with two it’s 2D and so on

® ' . | |
This can quickly get very expensive! B=0.1 _ 1 — 10

Imagine we have a = (0
hyperparameters a and /.

Let’s search over a = {0,1}

and f = {0.1,1,10} o=
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Other feature transformations are available

» We can design our own @(X); @ is often referred to as the design matrix

 Each element could be a Gaussian centred on each training point

gb(x) — [e—(x—x(1>)2/52 e_(x—x(l))z/(;2 e_(x_x(z))z/gz 6_(x_x(N))2/02]

 Here, o Is an additional hyperparameter
2

2

—— function
. o ¢ . o ¢ ® training data
® PP ©
® e
> 0 ® >~ 0
® °®
P [ X )
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Lasso regression

|
_ 2 Remember that we can
LiyssoW) = —|ly — Xw||"+ 4| w] . .
N _— interchange @ and X in these
- ~- ~ regularisation equations
MSE

* Very similar to ridge regression except the SE term has been scaled and the
regularisation term is a 1-norm

 1-norm encourages sparsity in w which is a form of feature selection

Contour plot for MSE Contour plot for 1-norm

2.0

2.0

The minimum occurs at one of the points where
the contours of the two terms are at a tangent

Such points are more likely to occur at the
corners of the 1-norm contours

Probabilistic interpretation: We are placing a
Laplace prior on our weights
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Optimisation

* Finding the weights that minimise a loss function on training data is an
optimisation problem minimise L(w) with solution w* = arg min L(w)

W W

» This was simple for L,,;,.(W) which is convex and differentiable
- We just compute VL., and set to zero .
. However, L, .. (W) is non-differentiable o
§0.6-
1 0.4
Llasso(w) ﬁ”y (I)WH2 T+ /1 ‘ W ‘ 0.2
regularisation 0.0

MSE 1.0  -05 0.0 0.5

1.0
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Convexity

* Convex functions have one extremum which is a minimum. This is very useful
for optimisation!

A convex function A non-convex function

* A function of one variable is convex if a line drawn between any two points on
the function doesn’t fall below the function

A convex function A non-convex function
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Lasso IS convex

» |w| is convex (asis|w|): it clearly has a minimum at w = 0.

* |t not being differentiable doesn’t change this

e The sum of two convex functions Is convex

1
L w)= —I|ly—Pwl||?+ Alw
lass()( ) 2N”y H ’ ‘v ‘J
k MSE

e L, ...,(W)is convex, we just need to find its minimum

regularisation
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Subderivatives

« g(w) = |w] is piecewise differentiable

1.0

0.8-

_ 06 @z {1 fw>0

0.4- dw —1 fw <0

0.2 A

0.0 -
—1.0 —0.5 0.0 0.5 1.0

« We can evaluate the gradient at any point (except w = 0)

* This is all we need to do to perform gradient descent (GD)
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Gradient descent (GD) intuition

« We have a function L(w) and we want to find w* = arg min L(w)

 Let’s initialise w at random and call it w,_,

W

» The gradientat w,_,: VL(W,_,) tells us locally the direction we can move

W,._, to most increase the function

 Move In the opposite direction!

Wi = Wig — @V L(W,) :

L(we=1)

L(Wt: 0) vWL(Wt=O)
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Gradient descent (GD) rationale

» Consider the loss at w,_.: L(w,_.)
» Let’s take a small step in weight space, sow,_..; =w,_.+ A

» Because this is small we can approximate L(w,_; +1) using a 1st order Taylor
expansion

e LW, ) =LW,_ +A)~Lw_)+ V,Lw,_)'A
» Ifweset A =—aV,L(w,_,)then L(w,_..,) < L(w,_,) as long as « is small

* We can therefore keep taking steps to minimise loss
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Gradient descent (GD) algorithm

Goal: We have a function L(w) and we want to find w* = arg min L(w)

o Initialise w as w,_
» For 1 in range(T):
1. Compute V,L(W,_)

2. Update Wt:i+1 — f—] ava(Wl‘:l)

a iIs called the step size, or learning rate

It is yet another hyperparameter w
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Optimisation algorithms

* Using an optimisation algorithm to learn the weights that minimise a loss
function on training data is known as training or fitting or learning!

* There are many optimisation algorithms; some work better than others for
different methods

 We will only detalil variations of gradient descent on this course
o Sklearn will default to whatever optimiser tends to work best for a method

* Please be happy using optimisation algorithms that you haven’t learnt about,
and if you’re not — go find out how they work!
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Summary

* \We have learnt about linear regression

 We have reasoned about the need for a test set for evaluation

 We have discovered how regularisation can prevent overfitting

 \We have learnt how a validation set can be used to perform model selection
 We have found out what convex functions are

 We have explored gradient descent for optimising convex functions
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