
Elliot J. Crowley, 26th February 2024

Data Analysis and Machine 
Learning 4 (DAML)
Week 6: Linear models for classification



• We learned about different types of linear regression and regularisation


• We looked at convex functions and gradient descent

Recap

f(x) = ̂y = w⊤ϕ(x)

Lridge(w) = ∥y − Φw∥2

SE

+ λ∥w∥2

regularisation
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Supervised Learning
• We want a model that takes in a new data point and outputs a prediction


• For the model to be accurate it must first learn from training data


• Often, models are parameterised functions and learning = finding the best parameters 

• Training data is a set of existing data points that have been labelled


• The label says what the prediction for that data point should be 

new 
data model prediction
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Two canonical problems in supervised learning

• Regression: Given input data, predict a continuous output


• Classification: Given input data, predict a distinct category

cat dog
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Linear models for classification
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Why linear models?

• They are simple and intuitive 


• They are interpretable 


• They use vectors and matrices (computers love these) 


• They work well in many scenarios 

Slide inspired by https://sites.google.com/site/christophlampert/teaching/kernel-methods-for-object-recognition
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The classification problem

• Our training set consists of  data point-target pairs  


• Data points  are column vectors, targets are class labels 



• i.e. each data point has been labeled as belonging to 1 of  classes


• Objective: We want a model that classifies our training data correctly


• Objective: We want a model that classifies our held-out data correctly

N {(x(n), y(n))}N
n=1

x ∈ ℝD

y ∈ ℤ+
<K = {0,1,…, K − 1}

K

The most common way to quantify classification performance is accuracy 
 

This is simply the fraction or % of classifications that are correct
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A linear classifier is a linear model + a threshold function

• We will use a linear model as we did for regression  


• For now we will consider binary classification:  or  

• For regression, we used  as our target prediction but we can’t do 
this for classification because the class labels are discrete


• Instead we will supply a threshold function that maps  to a discrete class 
prediction 


• This could be  

f(x) = w⊤x + b

y ∈ {0,1} y ∈ {−1,1}

f(x) ∈ ℝ

f(x)
̂y

̂y = {1 if f(x) > 0
0 if f(x) < 0

We can call  the classifier score 
for 

f(x)
x
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Linear classifier decision boundary in 2D

• Consider a training set  with  and 


• We have    where  and 


• Let’s use the threshold function 


• The line  forms the decision boundary of the classifier

{(x(n), y(n))}N
n=1 x ∈ ℝ2 y ∈ {0,1}

f(x) = w⊤x + b x = [x1 x2]⊤ w = [w1 w2]⊤

̂y = {1 if f(x) > 0
0 if f(x) < 0

f(x) = w1x1 + w2x2 + b = 0
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f(x) = 0



Decision boundary are hyperplanes

For  the decision boundary of a linear classifier is in 


• In 1D the decision boundary is a point


• In 2D the decision boundary is a line


• In 3D the decision boundary is a plane


• In 4D and above the decision boundary is a hyperplane we can’t visualise but 
all the maths still works (:

x ∈ ℝD D − 1

. ?
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Linear separability 
Our training data is linearly separable if we are able to draw a hyperplane that 
completely separates points from both classes

YES YES

NO NO
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Linear separability continued

• If training data isn’t linearly separable, a linear classifier can’t produce a 
decision boundary that perfectly classifies the training data


• You can still get good solutions if a hyperplane can separate most data


• If it can’t then a linear classifier won’t be any good
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Feature transformations

• We can introduce some feature transformation  to map our data into a 
space where it is linearly separable. We can then use 


• We’ll come back to this later in the course

ϕ
f(x) = w⊤ϕ(x) + b

ϕ(x) = [
∥x∥

tan−1 x2

x1
]

⊤

x = [x1
x2]
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Fitting a linear classifier

• For the classifier to be any good we learn the model parameters ,  using 
training data 


• There are lots of ways to do this but they all largely boil down to minimising 
different loss functions that involve classifier scores  and labels 


• The loss functions rarely involve discrete predictions as the threshold function 
has a gradient of zero everywhere it is defined! 


• We are going to cover logistic regression in detail and then look at some other 
approaches

w b

f(x) y
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Logistic Regression
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First… treat classification as regression

• Consider a training set  where   and 


• Let’s treat  as continuous : it just happens to be 0/1 for training data


• We can use   to predict this “continuous” label


• We could just minimise 


• We can just use e.g.  as our threshold function


• This is known as label regression. Our  isn’t particularly meaningful

{(x(n), y(n))}N
n=1 x ∈ ℝD y ∈ {0,1}

y y ∈ ℝ

f(x) = w⊤x + b

LMSE =
1
N ∑

n

(y(n) − f(x(n)))2

̂y = {1 if f(x) > 0.5
0 if f(x) < 0.5

f(x)
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Logistic Regression

• Probabilities are meaningful as they quantify uncertainty


• We want to predict : the probability that  belongs to class 1


• We can’t predict this with our linear model  however


• This is because probabilities must lie between 0 and 1 and  is unbounded


• Let’s instead predict an unbounded quantity that is related to 


p(y = 1 |x) x

f(x) = w⊤x + b

f(x)

p(y = 1 |x)

f(x) = log
p(y = 1 |x)

1 − p(y = 1 |x)
The log-odds
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The sigmoid function

• In logistic regression our model predicts the log-odds for class 


•
 
We can rearrange to express  in terms of log-odds

1

p(y = 1 |x)

f(x) = log
p(y = 1 |x)

1 − p(y = 1 |x)

p(y = 1 |x) =
1

1 + e−f(x)
= σ( f(x)) = σ(w⊤x + b)

 is the sigmoid function.  
It squashes numbers to be between 0 and 1

σ
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Discrete class predictions from log-odds

• We can convert log-odds to probabilities through 


• It follows that  as there are only two classes


• What threshold function should we use to make a discrete class prediction ?


• The obvious approach is to use 


•  when  which is a hyperplane 

• We can rewrite the above as 

p(y = 1 |x) = σ( f(x))

p(y = 0 |x) = 1 − σ( f(x))

̂y

̂y = {1 if p(y = 1 |x) ≥ 0.5
0 if p(y = 1 |x) < 0.5

σ(w⊤x + b) = 0.5 w⊤x + b = 0

̂y = {1 if f(x) ≥ 0
0 if f(x) < 0
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Maximum likelihood estimation

• We can write 


• We can then write an expression for the likelihood of our data





• Maximising likelihood is the same as minimising negative log-likelihood 
(divided by the number of data points)


p(y |x) = σ( f(x))y(1 − σ( f(x)))1−y

∏
n

p(y(n) |x(n)) = ∏
n

σ( f(x(n)))y(n)(1 − σ( f(x(n))))1−y(n)

NLL(w, b) = −
1
N ∑

n
[y(n) log σ( f(x(n))) + (1 − y(n))log(1 − σ( f(x(n))))]
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NLL is the log loss




• We can write  as  to express this more succinctly:





• It is also know as the logistic loss, or the cross-entropy loss. Minimising it is performing 
maximum likelihood estimation (MLE)


• Cross-entropy is a quantity that crops up in information theory. It measures how much the 
probabilities produced by our model differ from the true probabilities (so low = good)


NLL(w, b) = −
1
N ∑

n
[y(n) log σ( f(x(n))) + (1 − y(n))log(1 − σ( f(x(n))))]

p(y = 1 |x) = σ( f(x(n)) p(n)

Llog = −
1
N ∑

n
[y(n) log p(n) + (1 − y(n))log(1 − p(n))]
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Log loss




• This loss is convex for a linear classifier


•  We can use a gradient-based optimiser to solve  using

 


 

Llog = −
1
N ∑

n
[y(n) log p(n) + (1 − y(n))log(1 − p(n))]

minimise
w,b

Llog

∇wLlog = −
1
N ∑

n
(y(n) − p(n))x(n)

∇bLlog = −
1
N ∑

n
(y(n) − p(n))
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Stochastic Gradient descent (SGD) algorithm

• Goal: We want to minimise the training loss of our model on 


• We can write the loss as an average of per example losses  


• Initialise  and 


• For epoch in range( ):


• Shuffle 


• For  in range( ):


• Compute  and 


• Update  and 

𝔇 = {(x(n), y(n))}N
n=1

1
N ∑

n

L(y(n), x(n), w, b) =
1
N ∑

n

L(n)

w b

E

𝔇

n N

∇wL(n) ∇bL(n)

w ← w − α∇wL(n) b ← b − α∇bL(n)
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This is what sklearn does. There are lots 
of variants. 

See https://sebastianraschka.com/faq/
docs/sgd-methods.html



SGD Update 1
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SGD Update 2
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SGD Update 3
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SGD for 10 epochs
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“Don’t get cocky!”
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Regularisation

• We are seeing a model that is far too confident near 
the boundary. It is overfitting to the training data


• And look… its weights are large!


• We can add regularisation as we did for regression



Ltotal = Llog⏟
classification

+
λ
2

∥w∥2

regularisation
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We can use the validation set to 
find the optimal λ



Wait, why did that help?
• Consider the line of points that would correspond 

to some log-odds 


• This is just the line 


• The decision boundary is the line 


• The distance between these two parallel lines is  


• Regularising increase this distance, making the model less  
confident near the boundary


k

k = w⊤x + b

0 = w⊤x + b
k

∥w∥
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Titanic Dataset
• We can use historical data about passengers to learn a linear classifier to 

predict survival using logistic regression


• If we standardise data then the weights we learn are interpretable 


• Survival more probable for people who are in first class, female, young

For “Sex”, male has been mapped to 0 and female to 1 arbitrarily

w = [−0.97 1.27 −0.52 −0.27 −0.03 0.16]⊤

Gets 80% on held-out data so is a reasonable model

Pclass Sex Age SibSp Parch Fare
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Logistic regression in short

• Given a linear model , logistic regression is solving 





•
 
There are other methods that boil down to minimising different losses

f(x) = w⊤x + b minimise
w,b

Llog

Llog = −
1
N ∑

n
[y(n) log σ( f(x(n))) + (1 − y(n))log(1 − σ( f(x(n)))]

32



Perceptron learning

• Consider a training set  where   and 


• Given a linear model  and threshold function   
the perceptron learning algorithm is equivalent to solving 


{(x(n), y(n))}N
n=1 x ∈ ℝD y ∈ {−1,1}

f(x) = w⊤x + b ̂y = {1 if f(x) ≥ 0
−1 if f(x) < 0

minimise
w,b

Lhinge

Lhinge =
1
N ∑

n

max(0, − y(n) f(x(n)))
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https://en.wikipedia.org/wiki/Perceptron



Support Vector Machines (SVMs)

• Consider a training set  where   and 


• Given a linear model  and threshold function  
(linear) SVM learning is equivalent to solving 


{(x(n), y(n))}N
n=1 x ∈ ℝD y ∈ {−1,1}

f(x) = w⊤x + b ̂y = {1 if f(x) ≥ 0
−1 if f(x) < 0

minimise
w,b

LSVM

LSVM =
1
2

∥w∥2+C∑
n

max(0,1 − y(n) f(x(n)))

34
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∥w∥



SVMs are maximum margin classifiers




If we define the margin as the region where  then:


• The first term in  is small when the margin is big


• The second term in  is small when points  
don’t live in the margin


•  is a hyperparameter that controls the relative  
importance of these terms

LSVM =
1
2

∥w∥2+C∑
n

max(0,1 − y(n) f(x(n)))
| f(x) | < 1

LSVM

LSVM

C
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Logistic regression + 
sufficient regularisation also 

gives a large margin

2
∥w∥



Multinomial Logistic Regression
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Multi-class classification with linear classifiers

Now consider the multi-class scenario  with
.


There are three different approaches to solving this:


1. We could learn  one-vs-rest classifiers:  and classify 
points according to the highest score


2. We could learn  one-vs-one classifiers and classify points 
according to the majority vote 


3. We could make our linear model output a vector where each element is a 
score for a different class and select the class with the highest score

{(x(n), y(n))}N
n=1

y ∈ ℤ+
<K = {0,1,…, K − 1}

K f0(x), f1(x), …, fK−1(x)

(K(K − 1))/2
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A multi-class linear model

• In the binary case  where  and 


• For our model to output a score for each of  classes we can:


1. Replace the vector  with a matrix 


2. Replace the bias vector  with a vector 


• This gives us  where 

f(x) = w⊤x + b x ∈ ℝD f(x) ∈ ℝ

K

w ∈ ℝD W ∈ ℝK×D

b ∈ ℝ b ∈ ℝK

f(x) = Wx + b f(x) ∈ ℝK

Like having 
 models 

side-by-side
Kx bWf(x) +=
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Multinomial logistic regression

• Logistic regression naturally extends to multi-class problems


• In the binary setting, we just had  as the log-odds for class 1


• We now have . There are the logits for each class


• They are unnormalised log-probabilities; a generalisation of log-odds


• Let’s store the actual probabilities in a vector  and relate these to the logits 
via some function 

f(x) ∈ ℝ

f(x) ∈ ℝK

p
S

p =

p(y = 0 |x)
p(y = 1 |x)
p(y = 2 |x)

⋮
p(y = K − 1 |x)

= S( f(x))
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Softmax 

•  must sum to 1 so we need a function that normalises 


• We will use the softmax function  which squashes  so it sums to 1 and 
all values are between 0 and 1

p f(x)

S f(x)

S(z) = S(

z0
z1
⋮

zK−1

) =

exp z0

∑K−1
k=0 exp zk

exp z1

∑K−1
k=0 exp zk

⋮
exp zK−1

∑K−1
k=0 exp zk
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Learning for multinominal logistic regression
• We have  and   and want to solve 


• If we one-hot encode our labels as vectors then we can write the log loss as 




•  is a one-hot encoding of  which is 1 for the element corresponding to class  
and zero elsewhere e.g. for  and  we have 


• We can use a gradient-based optimiser with  and 


{(x(n), y(n))}N
n=1 f(x) = Wx + b minimise

W,b
Llog

Llog =
1
N

N

∑ − y(n)⊤ log p(n)

y ∈ ℝK y k
K = 6 y(t) = 2 y(t) = [0 0 1 0 0 0]⊤

∇WLlog ∇bLlog

See Murphy p346 for a 
derivation, noting differences 

in notation.
∇WLlog =

1
N [∑

n

(p(n) − y(n))x⊤
n ]

41

∇bLlog =
1
N [∑

n

(p(n) − y(n))]



Digit classification on MNIST

• MNIST dataset has 60k images (50k train, 10k test)


• Images are  so can vectorise to get 


• Each image is labelled as a digit 0-9 so 


• Let’s perform multinomial logistic regression with L1 regularisation


• Predict according to most probable class:  


• Test accuracy: 89.4% (or test error: 10.6%)

28 × 28 x ∈ ℝ784

y ∈ ℤ+
<10

̂y = argmax
k

p = argmax
k

f(x)

https://en.wikipedia.org/wiki/MNIST_database#/media/File:MnistExamples.png

These are the 
columns of  

 displayed as images
W

Inspired by https://scikit-learn.org/stable/auto_examples/linear_model/plot_sparse_logistic_regression_mnist.html 42



Summary

• We have seen that a linear classifier is a linear model plus a threshold function 
and looks at its decision boundary


• We have found out how to perform logistic regression for binary classification


• We have briefly looked at perceptrons and SVMs


• We have seen how to adapt logistic regression for multi-class classification
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