
Elliot J. Crowley, 26th February 2024

Data Analysis and Machine
Learning 4 (DAML)
Week 6: Linear models for classification

• We learned about different types of linear regression and regularisation

• We looked at convex functions and gradient descent

Recap

f(x) = ̂y = w⊤ϕ(x)

Lridge(w) = ∥y − Φw∥2

SE

+ λ∥w∥2

regularisation

2

Supervised Learning
• We want a model that takes in a new data point and outputs a prediction

• For the model to be accurate it must first learn from training data

• Often, models are parameterised functions and learning = finding the best parameters

• Training data is a set of existing data points that have been labelled

• The label says what the prediction for that data point should be

new 
data model prediction

3

Two canonical problems in supervised learning

• Regression: Given input data, predict a continuous output

• Classification: Given input data, predict a distinct category

cat dog

4

Linear models for classification

5

Why linear models?

• They are simple and intuitive

• They are interpretable

• They use vectors and matrices (computers love these)

• They work well in many scenarios

Slide inspired by https://sites.google.com/site/christophlampert/teaching/kernel-methods-for-object-recognition
6

https://sites.google.com/site/christophlampert/teaching/kernel-methods-for-object-recognition

The classification problem

• Our training set consists of data point-target pairs

• Data points are column vectors, targets are class labels

• i.e. each data point has been labeled as belonging to 1 of classes

• Objective: We want a model that classifies our training data correctly

• Objective: We want a model that classifies our held-out data correctly

N {(x(n), y(n))}N
n=1

x ∈ ℝD

y ∈ ℤ+
<K = {0,1,…, K − 1}

K

The most common way to quantify classification performance is accuracy

This is simply the fraction or % of classifications that are correct

7

A linear classifier is a linear model + a threshold function

• We will use a linear model as we did for regression

• For now we will consider binary classification: or

• For regression, we used as our target prediction but we can’t do
this for classification because the class labels are discrete

• Instead we will supply a threshold function that maps to a discrete class
prediction

• This could be

f(x) = w⊤x + b

y ∈ {0,1} y ∈ {−1,1}

f(x) ∈ ℝ

f(x)
̂y

̂y = {1 if f(x) > 0
0 if f(x) < 0

We can call the classifier score
for

f(x)
x

8

Linear classifier decision boundary in 2D

• Consider a training set with and

• We have where and

• Let’s use the threshold function

• The line forms the decision boundary of the classifier

{(x(n), y(n))}N
n=1 x ∈ ℝ2 y ∈ {0,1}

f(x) = w⊤x + b x = [x1 x2]⊤ w = [w1 w2]⊤

̂y = {1 if f(x) > 0
0 if f(x) < 0

f(x) = w1x1 + w2x2 + b = 0

9

f(x) = 0

Decision boundary are hyperplanes

For the decision boundary of a linear classifier is in

• In 1D the decision boundary is a point

• In 2D the decision boundary is a line

• In 3D the decision boundary is a plane

• In 4D and above the decision boundary is a hyperplane we can’t visualise but
all the maths still works (:

x ∈ ℝD D − 1

. ?
10

Linear separability
Our training data is linearly separable if we are able to draw a hyperplane that
completely separates points from both classes

YES YES

NO NO

11

Linear separability continued

• If training data isn’t linearly separable, a linear classifier can’t produce a
decision boundary that perfectly classifies the training data

• You can still get good solutions if a hyperplane can separate most data

• If it can’t then a linear classifier won’t be any good

12

TerribleOK

Feature transformations

• We can introduce some feature transformation to map our data into a
space where it is linearly separable. We can then use

• We’ll come back to this later in the course

ϕ
f(x) = w⊤ϕ(x) + b

ϕ(x) = [
∥x∥

tan−1 x2

x1
]

⊤

x = [x1
x2]

13

Fitting a linear classifier

• For the classifier to be any good we learn the model parameters , using
training data

• There are lots of ways to do this but they all largely boil down to minimising
different loss functions that involve classifier scores and labels

• The loss functions rarely involve discrete predictions as the threshold function
has a gradient of zero everywhere it is defined!

• We are going to cover logistic regression in detail and then look at some other
approaches

w b

f(x) y

14

Logistic Regression

15

First… treat classification as regression

• Consider a training set where and

• Let’s treat as continuous : it just happens to be 0/1 for training data

• We can use to predict this “continuous” label

• We could just minimise

• We can just use e.g. as our threshold function

• This is known as label regression. Our isn’t particularly meaningful

{(x(n), y(n))}N
n=1 x ∈ ℝD y ∈ {0,1}

y y ∈ ℝ

f(x) = w⊤x + b

LMSE =
1
N ∑

n

(y(n) − f(x(n)))2

̂y = {1 if f(x) > 0.5
0 if f(x) < 0.5

f(x)

16

Logistic Regression

• Probabilities are meaningful as they quantify uncertainty

• We want to predict : the probability that belongs to class 1

• We can’t predict this with our linear model however

• This is because probabilities must lie between 0 and 1 and is unbounded

• Let’s instead predict an unbounded quantity that is related to

p(y = 1 |x) x

f(x) = w⊤x + b

f(x)

p(y = 1 |x)

f(x) = log
p(y = 1 |x)

1 − p(y = 1 |x)
The log-odds

17

The sigmoid function

• In logistic regression our model predicts the log-odds for class

•
 
We can rearrange to express in terms of log-odds

1

p(y = 1 |x)

f(x) = log
p(y = 1 |x)

1 − p(y = 1 |x)

p(y = 1 |x) =
1

1 + e−f(x)
= σ(f(x)) = σ(w⊤x + b)

 is the sigmoid function.
It squashes numbers to be between 0 and 1

σ

18

Discrete class predictions from log-odds

• We can convert log-odds to probabilities through

• It follows that as there are only two classes

• What threshold function should we use to make a discrete class prediction ?

• The obvious approach is to use

• when which is a hyperplane

• We can rewrite the above as

p(y = 1 |x) = σ(f(x))

p(y = 0 |x) = 1 − σ(f(x))

̂y

̂y = {1 if p(y = 1 |x) ≥ 0.5
0 if p(y = 1 |x) < 0.5

σ(w⊤x + b) = 0.5 w⊤x + b = 0

̂y = {1 if f(x) ≥ 0
0 if f(x) < 0

19

Maximum likelihood estimation

• We can write

• We can then write an expression for the likelihood of our data

• Maximising likelihood is the same as minimising negative log-likelihood
(divided by the number of data points)

p(y |x) = σ(f(x))y(1 − σ(f(x)))1−y

∏
n

p(y(n) |x(n)) = ∏
n

σ(f(x(n)))y(n)(1 − σ(f(x(n))))1−y(n)

NLL(w, b) = −
1
N ∑

n
[y(n) log σ(f(x(n))) + (1 − y(n))log(1 − σ(f(x(n))))]

20

NLL is the log loss

• We can write as to express this more succinctly:

• It is also know as the logistic loss, or the cross-entropy loss. Minimising it is performing
maximum likelihood estimation (MLE)

• Cross-entropy is a quantity that crops up in information theory. It measures how much the
probabilities produced by our model differ from the true probabilities (so low = good)

NLL(w, b) = −
1
N ∑

n
[y(n) log σ(f(x(n))) + (1 − y(n))log(1 − σ(f(x(n))))]

p(y = 1 |x) = σ(f(x(n)) p(n)

Llog = −
1
N ∑

n
[y(n) log p(n) + (1 − y(n))log(1 − p(n))]

21

Log loss

• This loss is convex for a linear classifier

• We can use a gradient-based optimiser to solve using

Llog = −
1
N ∑

n
[y(n) log p(n) + (1 − y(n))log(1 − p(n))]

minimise
w,b

Llog

∇wLlog = −
1
N ∑

n
(y(n) − p(n))x(n)

∇bLlog = −
1
N ∑

n
(y(n) − p(n))

22

Stochastic Gradient descent (SGD) algorithm

• Goal: We want to minimise the training loss of our model on

• We can write the loss as an average of per example losses

• Initialise and

• For epoch in range():

• Shuffle

• For in range():

• Compute and

• Update and

𝔇 = {(x(n), y(n))}N
n=1

1
N ∑

n

L(y(n), x(n), w, b) =
1
N ∑

n

L(n)

w b

E

𝔇

n N

∇wL(n) ∇bL(n)

w ← w − α∇wL(n) b ← b − α∇bL(n)

23

This is what sklearn does. There are lots
of variants.

See https://sebastianraschka.com/faq/
docs/sgd-methods.html

SGD Update 1

24

SGD Update 2

25

SGD Update 3

26

SGD for 10 epochs

27

“Don’t get cocky!”

28

Regularisation

• We are seeing a model that is far too confident near 
the boundary. It is overfitting to the training data

• And look… its weights are large!

• We can add regularisation as we did for regression

Ltotal = Llog⏟
classification

+
λ
2

∥w∥2

regularisation

29

We can use the validation set to
find the optimal λ

Wait, why did that help?
• Consider the line of points that would correspond 

to some log-odds

• This is just the line

• The decision boundary is the line

• The distance between these two parallel lines is

• Regularising increase this distance, making the model less  
confident near the boundary

k

k = w⊤x + b

0 = w⊤x + b
k

∥w∥

30

Titanic Dataset
• We can use historical data about passengers to learn a linear classifier to

predict survival using logistic regression

• If we standardise data then the weights we learn are interpretable

• Survival more probable for people who are in first class, female, young

For “Sex”, male has been mapped to 0 and female to 1 arbitrarily

w = [−0.97 1.27 −0.52 −0.27 −0.03 0.16]⊤

Gets 80% on held-out data so is a reasonable model

Pclass Sex Age SibSp Parch Fare

31

Logistic regression in short

• Given a linear model , logistic regression is solving

•
 
There are other methods that boil down to minimising different losses

f(x) = w⊤x + b minimise
w,b

Llog

Llog = −
1
N ∑

n
[y(n) log σ(f(x(n))) + (1 − y(n))log(1 − σ(f(x(n)))]

32

Perceptron learning

• Consider a training set where and

• Given a linear model and threshold function
the perceptron learning algorithm is equivalent to solving

{(x(n), y(n))}N
n=1 x ∈ ℝD y ∈ {−1,1}

f(x) = w⊤x + b ̂y = {1 if f(x) ≥ 0
−1 if f(x) < 0

minimise
w,b

Lhinge

Lhinge =
1
N ∑

n

max(0, − y(n) f(x(n)))

33

https://en.wikipedia.org/wiki/Perceptron

Support Vector Machines (SVMs)

• Consider a training set where and

• Given a linear model and threshold function
(linear) SVM learning is equivalent to solving

{(x(n), y(n))}N
n=1 x ∈ ℝD y ∈ {−1,1}

f(x) = w⊤x + b ̂y = {1 if f(x) ≥ 0
−1 if f(x) < 0

minimise
w,b

LSVM

LSVM =
1
2

∥w∥2+C∑
n

max(0,1 − y(n) f(x(n)))

34

2
∥w∥

SVMs are maximum margin classifiers

If we define the margin as the region where then:

• The first term in is small when the margin is big

• The second term in is small when points  
don’t live in the margin

• is a hyperparameter that controls the relative  
importance of these terms

LSVM =
1
2

∥w∥2+C∑
n

max(0,1 − y(n) f(x(n)))
| f(x) | < 1

LSVM

LSVM

C

35

Logistic regression +
sufficient regularisation also

gives a large margin

2
∥w∥

Multinomial Logistic Regression

36

Multi-class classification with linear classifiers

Now consider the multi-class scenario with
.

There are three different approaches to solving this:

1. We could learn one-vs-rest classifiers: and classify
points according to the highest score

2. We could learn one-vs-one classifiers and classify points
according to the majority vote

3. We could make our linear model output a vector where each element is a
score for a different class and select the class with the highest score

{(x(n), y(n))}N
n=1

y ∈ ℤ+
<K = {0,1,…, K − 1}

K f0(x), f1(x), …, fK−1(x)

(K(K − 1))/2

37

A multi-class linear model

• In the binary case where and

• For our model to output a score for each of classes we can:

1. Replace the vector with a matrix

2. Replace the bias vector with a vector

• This gives us where

f(x) = w⊤x + b x ∈ ℝD f(x) ∈ ℝ

K

w ∈ ℝD W ∈ ℝK×D

b ∈ ℝ b ∈ ℝK

f(x) = Wx + b f(x) ∈ ℝK

Like having
 models

side-by-side
Kx bWf(x) +=

38

Multinomial logistic regression

• Logistic regression naturally extends to multi-class problems

• In the binary setting, we just had as the log-odds for class 1

• We now have . There are the logits for each class

• They are unnormalised log-probabilities; a generalisation of log-odds

• Let’s store the actual probabilities in a vector and relate these to the logits
via some function

f(x) ∈ ℝ

f(x) ∈ ℝK

p
S

p =

p(y = 0 |x)
p(y = 1 |x)
p(y = 2 |x)

⋮
p(y = K − 1 |x)

= S(f(x))

39

Softmax

• must sum to 1 so we need a function that normalises

• We will use the softmax function which squashes so it sums to 1 and
all values are between 0 and 1

p f(x)

S f(x)

S(z) = S(

z0
z1
⋮

zK−1

) =

exp z0

∑K−1
k=0 exp zk

exp z1

∑K−1
k=0 exp zk

⋮
exp zK−1

∑K−1
k=0 exp zk

40

Learning for multinominal logistic regression
• We have and and want to solve

• If we one-hot encode our labels as vectors then we can write the log loss as

• is a one-hot encoding of which is 1 for the element corresponding to class
and zero elsewhere e.g. for and we have

• We can use a gradient-based optimiser with and

{(x(n), y(n))}N
n=1 f(x) = Wx + b minimise

W,b
Llog

Llog =
1
N

N

∑ − y(n)⊤ log p(n)

y ∈ ℝK y k
K = 6 y(t) = 2 y(t) = [0 0 1 0 0 0]⊤

∇WLlog ∇bLlog

See Murphy p346 for a
derivation, noting differences

in notation.
∇WLlog =

1
N [∑

n

(p(n) − y(n))x⊤
n]

41

∇bLlog =
1
N [∑

n

(p(n) − y(n))]

Digit classification on MNIST

• MNIST dataset has 60k images (50k train, 10k test)

• Images are so can vectorise to get

• Each image is labelled as a digit 0-9 so

• Let’s perform multinomial logistic regression with L1 regularisation

• Predict according to most probable class:

• Test accuracy: 89.4% (or test error: 10.6%)

28 × 28 x ∈ ℝ784

y ∈ ℤ+
<10

̂y = argmax
k

p = argmax
k

f(x)

https://en.wikipedia.org/wiki/MNIST_database#/media/File:MnistExamples.png

These are the
columns of

 displayed as images
W

Inspired by https://scikit-learn.org/stable/auto_examples/linear_model/plot_sparse_logistic_regression_mnist.html 42

Summary

• We have seen that a linear classifier is a linear model plus a threshold function
and looks at its decision boundary

• We have found out how to perform logistic regression for binary classification

• We have briefly looked at perceptrons and SVMs

• We have seen how to adapt logistic regression for multi-class classification

43

