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Recap

 We learned about different types of linear regression and regularisation
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regularisation

 We looked at convex functions and gradient descent
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Supervised Learning

 \We want a model that takes in a new data point and outputs a prediction

new -
data —bm—b prediction

* For the model to be accurate it must first learn from training data
» Often, models are parameterised functions and learning = finding the best parameters
* Jraining data is a set of existing data points that have been labelled

* The label says what the prediction for that data point should be



Two canonical problems in supervised learning

 Regression: Given input data, predict a continuous output

—— function
® @ training data




Linear models for classification



Why linear models?

* They are simple and intuitive
 They are interpretable
* They use vectors and matrices (computers love these)

 They work well In many scenarios

Slide inspired by https://sites.googIe.com/site/christophlampert/teaching/kernel—methods—for—object—recognition6



https://sites.google.com/site/christophlampert/teaching/kernel-methods-for-object-recognition

The classification problem

. Our training set consists of N data point-target pairs {(x", y(”))}],;]=1

e Data points X € | D are column vectors, targets are class labels
yEZL,={01,....K-1}

* j.e. each data point has been labeled as belonging to 1 of K classes
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* Objective: We want a model that classifies our held-out data correctly

The most common way to quantify classification performance is accuracy

This is simply the fraction or % of classifications that are correct



A linear classifier i1s a linear model + a threshold function

. We will use a linear model as we did for regression f(x) = w'xX + b

» For now we will consider binary classification: y € {0,1}ory e {—1,1}

» For regression, we used f(X) € R as our target prediction but we can’t do
this for classification because the class labels are discrete

* Instead we will supply a threshold function that maps f(X) to a discrete class
prediction

1 iff (X) > 0 We can call /(X) the classifier score



Linear classifier decision boundary in 2D

« Consider a training set {(X(’”l),y(’”l))}f;’:1 withx € R?and y € {0,1)}

» We have f(X) = W' X+ b where X = [ X4 Xz]T and w = |[W Wz]T

1 if f(x) > 0

* Let’s use the threshold function y = {O if f(x) < 0
Iif F(X

* The line f(X) = w;x; + w,x, + b = 0 forms the decision boundary of the classifier

J(x) =0




Decision boundary are hyperplanes

For x € R” the decision boundary of a linear classifieris in D — 1
* |n 1D the decision boundary is a point

* |n 2D the decision boundary is a line

* |n 3D the decision boundary is a plane

* |n 4D and above the decision boundary is a hyperplane we can’t visualise but
all the maths still works (;
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Linear separability

Our training data is linearly separable if we are able to draw a hyperplane that
completely separates points from both classes
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Linear separability continued

 |f training data isn’t linearly separable, a linear classifier can’t produce a
decision boundary that perfectly classifies the training data

* You can still get good solutions if a hyperplane can separate most data

* |f it can’t then a linear classifier won’t be any good

Terrible
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Feature transformations

» We can introduce some feature transformation ¢ to map our data into a
space where it is linearly separable. We can then use f(x) = w' (x) + b

e We’ll come back to this later in the course
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Fitting a linear classifier

 For the classifier to be any good we learn the model parameters w, b using
training data

* There are lots of ways to do this but they all largely boil down to minimising
different loss functions that involve classifier scores f(X) and labels y

* The loss functions rarely involve discrete predictions as the threshold function
has a gradient of zero everywhere it is defined!

* We are going to cover logistic regression in detail and then look at some other
approaches

14



Logistic Regression



First... treat classification as regression

. Consider a training set {(x"", y") }]nv=1 where x € RP andy € {0,1}

o Let’s treat y as continuous y € R: it just happens to be 0/1 for training data

. We can use f(X) = W'X + b to predict this “continuous” label

1
» We could just minimise Ly;¢r = N Z (y(”) —f(X(n)))2
1 if f(x) > 0.5

r threshold function
0 iff(x)<o.5asou eshold functio

* We can just use e.g. y = {

 This is known as label regression. Our f(X) isn’t particularly meaningful
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Logistic Regression

* Probabilities are meaningful as they quantify uncertainty

» We want to predict p(y = 1 | X): the probability that X belongs to class 1

. We can’t predict this with our linear model f(x) = w'x + b however

» This is because probabilities must lie between 0 and 1 and f(X) is unbounded

» Let’s instead predict an unbounded quantity that is related to p(y = 1 | x)

p(y:—l‘X) The log-odds

00 =loe T S o 1%
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The sigmoid function

» In logistic regression our model predicts the log-odds for class 1

B p(y = 1[x)
J0 = T o = 1w

» We can rearrange to express p(y = 1 |X) in terms of log-odds

= 6(f(X)) = (WX + b) ”

0.6
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o I1s the sigmoid function. 0.0

It squashes numbers to be between 0 and 1 -1 S



Discrete class predictions from log-odds

 We can convert log-odds to probabilities through p(y = 1 |X) = o(f(X))
e |t follows that p(y = 0|X) = 1 — 6(f(Xx)) as there are only two classes

» What threshold function should we use to make a discrete class prediction y?

| fp(y=1|x)>0.5

« The obvious approach is to use y = { .
0 ifp(y=1]|x) <0.5

« o(W'x+ b) = 0.5 when w'x + b = 0 which is a hyperplane

| if f(x) > 0
0 if f(x) <O

» We can rewrite the above as y = {
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Maximum likelihood estimation

.+ We can write p(y|X) = o(f(x))(1 — o(f(x)))'™

 \We can then write an expression for the likelihood of our data

Hp(y(n) ‘ X(n)) — H G(f(X(n)))y(n)(l B G(f(X(n))))l_y(n)

 Maximising likelihood is the same as minimising negative log-likelihood
(divided by the number of data points)

NLL(w,5) = =~ 3 [y log o fAx®) + (1 = y)log(1 = o fx"))



NLL is the log loss

NLL(W, ) = — % > [y log o(Ax™) + (1 = y™)log(1 = o(fx"))

. We can write p(y = 1|x) = o(f(x") as p""" to express this more succinctly:

1
Lig ==~ D [y(”) logp™ + (1 = y™)log(1 = p™)

* |t is also know as the logistic loss, or the cross-entropy loss. Minimising it is performing
maximum likelihood estimation (MLE)

* Cross-entropy is a quantity that crops up in information theory. It measures how much the
probabilities produced by our model differ from the true probabilities (so low = good)
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Log loss

1
Lipg == 2 |y logp™ + (1 = y*log(1 ~ p)

e This loss Is convex for a linear classifier

. We can use a gradient-based optimiser to solve minimise L;,, using

1 W.D
VL, = — ~ Z (y — p™)x®

1
Vilige = = Iy; Z (y®" = p™)
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Stochastic Gradient descent (SGD) algorithm

« Goal: We want to minimise the training loss of our model on & = {(X(”),y(’”’))}]::1

. We can write the loss as an average of per example losses % Z L(y(”), x" w, b) = % Z L™
n n
* Initialise w and b _, Logloss for a point labelled as class 1
» For epoch in range(£): G )
+ Shuffle D o
« For n in range(/V): o KR

. Compute VL™ and V,L"™

This is what sklearn does. There are lots

e Update w «— w — CIVWL(n) and b <« b — Clva(n) of variants.

See https://sebastianraschka.com/faq/
docs/sgd-methods.html
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SGD Update 1

Step 1 before any update
w; = —0.156,w, =0.170, b =0.000
total log loss: 0.700

@ classO
m class1l

Step 1 after bias update
w; = —0.156,w, =0.170, b =0.050
total log loss: 0.700

@ classO
m classl

Step 1 after weight + bias update
w; = —0.195,w, =0.131, b=0.050
total log loss: 0.664

@ classO
m class1
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SGD Update 2

Step 2 before any update
w; = —0.195,w, =0.131, b=0.050
total log loss: 0.664

@ CclassO
m class1l

Step 2 after bias update
w; = —0.195,w, =0.131, b=0.002

total log loss: 0.664

Step 2 after weight + bias update
wi; = —0.264,w, =0.074, b=0.002

total log loss: 0.608

class O
class 1

class O
class 1




SGD Update 3

Step 3 before any update Step 3 after bias update Step 3 after weight + bias update
w1, = —0.264,w, =0.074, b=0.002 w1 = —0.264,w, =0.074, b =0.048 w1 = —0.304,w, =0.024, b=0.048
total log loss: 0.608 total log loss: 0.609 total log loss: 0.572
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GD for 10 epochs

After Epoch 1: After Epoch 2: After Epoch 3: After Epoch 4: After Epoch 5:
wy=—1.092,w,=—-0.770, b= —0.028 wy=—1.472,w,=—-1.137, b= —0.080 wy=—-1717,w,= —-1.375, b= —0.112 wy= —1.892,w,= —1.545, b= —-0.144 wy= —2.038,w,=—-1.684, b= —-0.170
total log loss: 0.189 total log loss: 0.119 total log loss: 0.090 total log loss: 0.075 total log loss: 0.065

([
(
|
After Epoch 6: After Epoch 7: After Epoch 8: After Epoch 9: After Epoch 10:
wy, = —2.157,w, = —1.800, b= —0.191 wy = —2.261,w, = —1.900, b= —0.206 wy = —2.353,w,=—-1.988, b= —0.224 wy, = —2.439,w, = —2.070, b= —0.237 wy, = —2.514,w, = —2.142, b= —0.253
total log loss: 0.058 total log loss: 0.053 total log loss: 0.049 total log loss: 0.045 total log loss: 0.042
(]
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“Don’t get cocky!”

After Epoch 100:
wi= —4.496,w, = —4.300, b= —0.688
total log loss: 0.011

@ classO

m class1
AN

After Epoch 1000:
wy= —11.223,w,= —13.181, b= —2.222
total log loss: 0.000

@ classO
m class1
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After Epoch 100:
wi = —4.496,w, = —4.300, b= —0.688
total log loss: 0.011

Regularisation

 We are seeing a model that is far too confident near
the boundary. It is overfitting to the training data

 And looK... its weights are large!

@ CcClassO
m class1

 We can add regularisation as we did for regression ster Evoch 100 it reaularication \

wiy= —1.398,w, = —1.264, b= —0.184
total log loss: 0.115

— o 2
Ltotal _ Llog T H H w H
classification regularisation .

We can use the validation set to
find the optimal A

@ cClassO

m class 1
AN




After Epoch 100:
wi = —4.496,w, = —4.300, b= —0.688
total log loss: 0.011

Wait, why did that help?

 Consider the line of points that would correspond
to some log-odds k

. Thisis just the linek = w'x + b

@ <classO

m class1
AN

X1

® The deCISIOﬂ boundary |S the ||ne O — WTX + b After Epoch 100 with regularisation:

wy = —1.398,w, = —1.264, b= —0.184

total log loss: 0.115

 The distance between these two parallel lines is

* Regularising increase this distance, making the model less
confident near the boundary

@ cClassO

m class 1
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Titanic Dataset

* We can use historical data about passengers to learn a linear classifier to
predict survival using logistic regression

Fare | Survived
7.2500
71.2833
7.9250

Pclass Sex Age SibSp Parc
22.0
38.0
26.0
35.0

35.0

53.1000 For “Sex”, male has been mapped to 0 and female to 1 arbitrarily

h
0
0
0
0
0 8.0500
5
0
0
0
0

ORRRLRO

29.1250
13.0000

39.0
27.0
19.0
26.0
32.0

30.0000
30.0000
7.7500

OO0 ORORR
R RO ORRROS

WkEEFENW
OO0 rRroK

* |f we standardise data then the weights we learn are interpretable

Pclass S Age SibSp Parch Fare

w=[-097 127 —0.52 —027 —0.03 0.16]"

* Survival more probable for people who are in first class, female, young

Gets 80% on held-out data so is a reasonable model
31



Logistic regression in short

. Given a linear model f(x) = w'x + b, logistic regression is solving minimise Ly,
w.,b

1
Lipg = = 2, [y 10g o(fX™) + (1 = y™)log(1 = o(fx™)

Log loss for a point x® with label 1 Log loss for a point x® with label 0
10- 10
8- g
61 6
2 2
4 4
2- 5.
O_ [ [ O_ [ [ [ [ [
—10 -5 0) 5 10 —10 -5 0) 5 10

f(x9) f(xD)

* There are other methods that boil down to minimising different losses |
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Perceptron learning

. Consider a training set {(x", y") }]le where x € R andy € {—1,1}

. Given a linear model f(x) = w'X + b and threshold function ;- {1_1 :ggig

the perceptron learning algorithm is equivalent to solving minimise Ly, .
W,Dh

1
Lhinge — N Z max (Oa — y(n)f(x(n)))

Hinge loss for a point x
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https://en.wikipedia.org/wiki/Perceptron
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Support Vector Machines (SVMs)

Dandy e {-1,1)

. Consider a training set {(x", y™) }27:1 where X € |

. Given a linear model f(X) = w ' X + b and threshold function y:{

1 if f(x) >0
—1 if f(x) <0

(linear) SVM learning is equivalent to solving minimise Lqy,

W.D

|
L = —||w||*+C maX(O,l — vy fx )
SVM 2” | ; y o Ax)

. e class -1

~

m class1l
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SVMs are maximum margin classifiers

1
Loy, = —||W||*+C E maX(O,l — y Ax )
SVM 2” | n y U HxT)

If we define the margin as the region where | f(X)| < 1 then:

o The first term in Ly, is small when the margin is big i

W]l

« The second term in L¢y,, is small when points .
don’t live in the margin )

» ( is a hyperparameter that controls the relative <
Importance of these terms

Logistic regression +
sufficient regularisation also

. e class -1

m class1l
N ~

gives a large margin X1



Multinomial Logistic Regression



Multi-class classification with linear classifiers

Now consider the multi-class scenario {(X(”), y(”))}
yeEZL,={01,...,K—1}.

N
=

i with

There are three different approaches to solving this:

1. We could learn K one-vs-rest classifiers: f(X), f{(X), ..., fx_;(X) and classify
points according to the highest score

2. We could learn (K(K — 1))/2 one-vs-one classifiers and classify points
according to the majority vote

3. We could make our linear model output a vector where each element is a
score for a different class and select the class with the highest score

37



A multi-class linear model

. In the binary case f(x) = w'x + b where x € R” and f(x) € [

e For our model to output a score for each of K classes we can:

1. Replace the vector w € R” with a matrix W € R**"

K

2. Replace the bias vector b € R with a vectorb € |

. This gives us f(x) = Wx + b where f(x) € R}

Like having
K models
side-by-side
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Multinomial logistic regression

* Logistic regression naturally extends to multi-class problems

» In the binary setting, we just had f(X) € R as the log-odds for class 1

» We now have f(x) € R". There are the logits for each class

 They are unnormalised log-probabilities; a generalisation of log-odds

» Let’s store the actual probabilities in a vector p and relate these to the logits
via some function §

p(y =0]x)
p(y = 1]x)
P=| pOo=2|x) [ =5(/(x)

p(y=K~-1]|x)
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Softmax

» P must sum to 1 so we need a function that normalises f(X)

« We will use the softmax function § which squashes f(X) so it sums to 1 and
all values are between 0 and 1

exp g

K-1
Zk:() CXP <k

ZO eXp Zl 5.0 1.00
<] K-1 | |
5(z) = 5( : ) = 2o SXP % 2.5
Zo $ 0.0
k=1 CXP k-1 e
K—1
Zk:O CXP 2k —5.0




Learning for multinominal logistic regression

* We have {(X(”), y(”)) }N and f(x) = WX + b and want to solve minimise Llog
W.b

e |f we one hot encode our labels as vectors then we can write the log loss as

Lipg = — Z y™Tlog p®

e yE I K'is a one-hot encoding of y which is 1 for the element corresponding to Class k
and zero elsewhere e.g. for K = 6and y =2wehavey? =[0 0 1 0 0 0]'

* We can use a gradient-based optimiser with VL, and V,L;,,

1 1
Vil = 5| 2 @7 =YX | VL=< X 0" -y") il
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Digit classification on MNIST

000 0006QopgpOoOCZ (¢ OO
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 MNIST dataset has 60k images (50k train, 10k test) 3333333%>3333333
U +tdA9YYesyddy\yH
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» Images are 28 X 28 so can vectorise to get X € | bCbblbbbbisé6Cil
T77 70T N2 FRT7 T 7

¥ 3 ¢t 8 %8 P ¥ P TTIT T & L 9

« Each image is labelled as a digit O- 930y€Z<1O AR

e |Let’s perform multinomial logistic regression with L1 regularisation

* Predict according to most probable class: y = argmax p = argmax f(x)
k k

* Jest accuracy: 89.4% (or test error: 10. 6%

These are the
columns of W
displayed as images

Insplred by https: //sc:|k|t learn. org/stable/auto examples/llnear model/plot sparse_logistic_regression_mnist.html 4,



Summary

 \WWe have seen that a linear classifier is a linear model plus a threshold function
and looks at its decision boundary

* We have found out how to perform logistic regression for binary classification
* We have briefly looked at perceptrons and SVMs

 We have seen how to adapt logistic regression for multi-class classification
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