
Elliot J. Crowley, 11th March 2024

Data Analysis and Machine 
Learning 4 (DAML)
Week 8: Classification and Regression Trees



• We looked at different models for classification


• We considered model selection and a typical ML workflow


• We looked at different ways to evaluate classifiers

Recap
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Non-parametric models

• Parametric models are represented by a function with a fixed number of 
parameters i.e. they have a fixed capacity


• Non-parametric models are not!


• The capacity of a non-parametric can scale with the number of data points


• In this lecture we will look at classification and regression trees (CARTs) which 
are non-parametric models


• These are also known as decision trees

Credit to Joe Mellor for the description
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Classification trees
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• An upside-down tree consisting of nodes — leaf nodes are at the bottom


• Each node splits incoming data based on a threshold 
for a single feature

Classification trees

x2 ≤ 0.294?

x1 ≤ 0.454?class 0

class 2 class 1

True False

True False

x
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Classifying a point x(t)

x(t)
2 ≤ 0.294?

x(t)
1 ≤ 0.454?class 0

class 2 class 1

True False

True False

x(t)
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Classifying a point x(t)

x(t)
2 ≤ 0.294?

x(t)
1 ≤ 0.454?class 0

class 2 class 1

True False

True False

x(t)

 is classified as class 2x(t)
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What is the classification tree doing?

• It is slicing up the feature space using straight lines (/hyperplanes)


• This gives a non-linear decision boundary/surface

x2 ≤ 0.294?

x1 ≤ 0.454?class 0

class 2 class 1

True False

True False

x

8



Classification tree learning

𝔇

𝔇R𝔇L

𝔇

𝔇R𝔇L

𝔇LL 𝔇LR 𝔇RL 𝔇RR

𝔇

𝔇R𝔇L

𝔇LL 𝔇LR 𝔇RL 𝔇RR

𝔇LLL…

• We have a training set  where  and 


• We start with a single node and learn the best way to split the training set into 
a left and right split 


• Then for each split, we create a node and learn the best way to split it further 
and so on. This is a greedy algorithm!


𝔇 = {(x(n), y(n)) ∈ N} x ∈ ℝD y ∈ ℤ+
<K
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Finding the best split at a node

• Consider a subset of data arriving at some node : 


• The node will split this into  and 
 

• We want to find the feature  and threshold  that gives us the best split 

• If we had some  that tells us how bad a data split is then we could solve:


i 𝔇i = {(x(n), y(n)) ∈ Ni}

𝔇L
i = {(x(n), y(n)) ∈ Ni : x(n)

j ≤ t}
𝔇R

i = {(x(n), y(n)) ∈ Ni : x(n)
j > t}

j t

c

minimise
j,t

|𝔇L
i ( j, t) |

|𝔇i |
c(DL

i ( j, t)) +
|𝔇R

i ( j, t) |
|𝔇i |

c(DR
i ( j, t))

Formulation based on Murphy’s book 
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What makes a good split for classification?

A B
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Measuring the quality of a split

• A good split will separate examples from different classes


• This will make the resulting class distributions non-uniform


• Entropy provides a measure of the uniformity of a probability distribution


• For a split, we can divide the number of data points in a class by the total 
number of points in the split to get empirical probabilities 


• Entropy can then be computed as 


• We can use this as  to measure how bad a split is

p0, p1, …, pK−1

H = − ∑
k

pk log2 pk

c
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Examples of different entropies 
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We can also use Gini impurity as c
Gini impurity is the probability of incorrectly classifying a new data point labelled 
according to the class distribution of that split



G = ∑
k

pk(1 − pk)

Shapes are very similar


Choice has minimal effect 
on performance
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Learning example: Splitting 𝔇

• We will  show how the tree from the start was grown using Gini impurity as 


• Let’s create a node that best splits  into  and 


• We solve  


• This gives us  and 

c

𝔇 𝔇L 𝔇R

minimise
j,t

|𝔇L |
|𝔇 |

c(𝔇L) +
|𝔇R |
|𝔇 |

c(𝔇R)

j = 2 t = 0.294

𝔇

T F

x2 ≤ 0.294?𝔇L 𝔇R
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Learning example: Splitting 𝔇L

• Now let’s create a node that splits … or not 

•  only contains examples from 1 class so we just create a leaf node


• At a leaf node we classify according to the most probable 
class in the training split at that node 


•
 
Here the split contains 10 points from class 0 and 
0 points from class 1 or 2


•  , ,  so classify as class 0

𝔇L

𝔇L

p0 = 1 p1 = 0 p2 = 0
class 0

𝔇

T F

x2 ≤ 0.294?𝔇L 𝔇R

This leaf node is pure 
because it only has 

examples from one class
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Learning example: Splitting 𝔇R

• Now let’s create a node that splits  into  and 


• We solve  


• This gives us  and  which we use to 
create a node


• Both splits only contain 1 class, so we create  
pure leaf nodes and we’re done!

𝔇R 𝔇RL 𝔇RR

minimise
j,t

|𝔇RL |
|𝔇R |

c(𝔇RL) +
|𝔇RR |
|𝔇R |

c(𝔇RR)

j = 1 t = 0.454

class 0

𝔇

T F

x2 ≤ 0.294?𝔇L 𝔇R

x1 ≤ 0.454?

class 2 class 1

T F𝔇RL
𝔇RR
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How trees will look in Sklearn

Make sure that you’re happy that these trees are the same!

x_2 ≤ 0.294
gini = 0.667
samples = 30

value = [10, 10, 10]
class = 0

gini = 0.0
samples = 10

value = [10, 0, 0]
class = 0

True

x_1 ≤ 0.454
gini = 0.5

samples = 20
value = [0, 10, 10]

class = 1

False

gini = 0.0
samples = 10

value = [0, 0, 10]
class = 2

gini = 0.0
samples = 10

value = [0, 10, 0]
class = 1

x1 ≤ 0.454?class 0

class 2 class 1

T F

x2 ≤ 0.294?

T F
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• Yes. They will massively overfit to the training data

Won’t trees get silly if we keep splitting until nodes are pure?

x_2 ≤ 0.485
gini = 0.749
samples = 86

value = [21, 23, 20, 22]
class = 1

x_1 ≤ 0.504
gini = 0.561
samples = 44

value = [20, 3, 0, 21]
class = 3

True

x_1 ≤ 0.464
gini = 0.545
samples = 42

value = [1, 20, 20, 1]
class = 1

False

x_2 ≤ -0.175
gini = 0.169
samples = 22

value = [20, 1, 0, 1]
class = 0

x_2 ≤ -0.701
gini = 0.165
samples = 22

value = [0, 2, 0, 20]
class = 3

x_2 ≤ -0.232
gini = 0.406
samples = 8

value = [6, 1, 0, 1]
class = 0

gini = 0.0
samples = 14

value = [14, 0, 0, 0]
class = 0

x_2 ≤ -0.303
gini = 0.245
samples = 7

value = [6, 0, 0, 1]
class = 0

gini = 0.0
samples = 1

value = [0, 1, 0, 0]
class = 1

gini = 0.0
samples = 4

value = [4, 0, 0, 0]
class = 0

x_2 ≤ -0.294
gini = 0.444
samples = 3

value = [2, 0, 0, 1]
class = 0

gini = 0.0
samples = 1

value = [0, 0, 0, 1]
class = 3

gini = 0.0
samples = 2

value = [2, 0, 0, 0]
class = 0

gini = 0.0
samples = 1

value = [0, 1, 0, 0]
class = 1

x_2 ≤ 0.336
gini = 0.091
samples = 21

value = [0, 1, 0, 20]
class = 3

gini = 0.0
samples = 19

value = [0, 0, 0, 19]
class = 3

x_2 ≤ 0.406
gini = 0.5

samples = 2
value = [0, 1, 0, 1]

class = 1

gini = 0.0
samples = 1

value = [0, 1, 0, 0]
class = 1

gini = 0.0
samples = 1

value = [0, 0, 0, 1]
class = 3

x_2 ≤ 1.808
gini = 0.169
samples = 22

value = [0, 1, 20, 1]
class = 2

x_2 ≤ 1.696
gini = 0.095
samples = 20

value = [1, 19, 0, 0]
class = 1

gini = 0.0
samples = 20

value = [0, 0, 20, 0]
class = 2

x_1 ≤ -0.75
gini = 0.5

samples = 2
value = [0, 1, 0, 1]

class = 1

gini = 0.0
samples = 1

value = [0, 1, 0, 0]
class = 1

gini = 0.0
samples = 1

value = [0, 0, 0, 1]
class = 3

gini = 0.0
samples = 19

value = [0, 19, 0, 0]
class = 1

gini = 0.0
samples = 1

value = [1, 0, 0, 0]
class = 0
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• To combat overfitting we can set a maximum depth for splitting


• Nodes beyond this depth are converted into leaf nodes 


• At a leaf, classify according to most probable class

Regularisation in trees

x_2 ≤ 0.485
gini = 0.749
samples = 86

value = [21, 23, 20, 22]
class = 1

x_1 ≤ 0.504
gini = 0.561
samples = 44

value = [20, 3, 0, 21]
class = 3

True

x_1 ≤ 0.464
gini = 0.545
samples = 42

value = [1, 20, 20, 1]
class = 1

False

gini = 0.169
samples = 22

value = [20, 1, 0, 1]
class = 0

gini = 0.165
samples = 22

value = [0, 2, 0, 20]
class = 3

gini = 0.169
samples = 22

value = [0, 1, 20, 1]
class = 2

gini = 0.095
samples = 20

value = [1, 19, 0, 0]
class = 1

This tree has a depth of 2 as 
there are 2 levels of splitting
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Malignancy classification with a small tree

• Breast Cancer Wisconsin dataset has data points  with binary class 
labels  (malignant / benign) 


• Features are measurements from a digitised image of a fine needle aspirate of 
a breast mass


• Let’s fit a classification tree with a max depth of 2

x ∈ ℝ30

y

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

mean concave points ≤ 0.051
entropy = 0.958
samples = 381

value = [145, 236]
class = benign

worst radius ≤ 16.83
entropy = 0.293
samples = 233
value = [12, 221]
class = benign

True

worst perimeter ≤ 114.45
entropy = 0.473
samples = 148
value = [133, 15]
class = malignant

False

entropy = 0.157
samples = 219
value = [5, 214]
class = benign

entropy = 1.0
samples = 14
value = [7, 7]

class = malignant

entropy = 0.98
samples = 36
value = [21, 15]
class = malignant

entropy = 0.0
samples = 112
value = [112, 0]
class = malignant

This is interpretable 
and achieves a 

validation accuracy of 
91.5%
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Malignancy classification with a large tree
mean concave points ≤ 0.051

entropy = 0.958
samples = 381

value = [145, 236]
class = benign

worst radius ≤ 16.83
entropy = 0.293
samples = 233
value = [12, 221]
class = benign

True

worst perimeter ≤ 114.45
entropy = 0.473
samples = 148
value = [133, 15]
class = malignant

False

radius error ≤ 0.626
entropy = 0.157
samples = 219
value = [5, 214]
class = benign

mean texture ≤ 16.19
entropy = 1.0
samples = 14
value = [7, 7]

class = malignant

worst texture ≤ 30.145
entropy = 0.106
samples = 216
value = [3, 213]
class = benign

worst symmetry ≤ 0.208
entropy = 0.918
samples = 3
value = [2, 1]

class = malignant

entropy = 0.0
samples = 188
value = [0, 188]
class = benign

worst radius ≤ 14.43
entropy = 0.491
samples = 28
value = [3, 25]
class = benign

entropy = 0.0
samples = 20
value = [0, 20]
class = benign

mean perimeter ≤ 86.26
entropy = 0.954
samples = 8
value = [3, 5]
class = benign

mean compactness ≤ 0.052
entropy = 0.811
samples = 4
value = [3, 1]

class = malignant

entropy = 0.0
samples = 4
value = [0, 4]
class = benign

entropy = 0.0
samples = 1
value = [0, 1]
class = benign

entropy = 0.0
samples = 3
value = [3, 0]

class = malignant

entropy = 0.0
samples = 2
value = [2, 0]

class = malignant

entropy = 0.0
samples = 1
value = [0, 1]
class = benign

entropy = 0.0
samples = 5
value = [0, 5]
class = benign

worst concavity ≤ 0.207
entropy = 0.764
samples = 9
value = [7, 2]

class = malignant

entropy = 0.0
samples = 2
value = [0, 2]
class = benign

entropy = 0.0
samples = 7
value = [7, 0]

class = malignant

worst texture ≤ 25.655
entropy = 0.98
samples = 36
value = [21, 15]
class = malignant

entropy = 0.0
samples = 112
value = [112, 0]
class = malignant

worst concave points ≤ 0.166
entropy = 0.523
samples = 17
value = [2, 15]
class = benign

entropy = 0.0
samples = 19
value = [19, 0]

class = malignant

entropy = 0.0
samples = 15
value = [0, 15]
class = benign

entropy = 0.0
samples = 2
value = [2, 0]

class = malignant

Depth 7 tree with a 
validation accuracy of 

95.2%

This is hard to 
interpret

Is this a scenario where you 
would trade off interpretability 

for performance?
22



Regression trees
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Regression trees

• Very similar to classification trees except the output is real-valued 

x ≤ 0.0
squared_error = 0.49

samples = 50
value = 0.0

x ≤ -2.693
squared_error = 0.101

samples = 25
value = -0.624

True

x ≤ 2.693
squared_error = 0.101

samples = 25
value = 0.624

False

squared_error = 0.02
samples = 4
value = -0.189

squared_error = 0.074
samples = 21
value = -0.706

squared_error = 0.074
samples = 21
value = 0.706

squared_error = 0.02
samples = 4
value = 0.189

R1 R2 R3 R4

R1

R2

R3

R4
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Regression trees

• The output is a bunch of discrete regions  with values 


• We can write this functionally as   if we must :)

Rj wj

f(x) = ∑
j

wj𝕀(x ∈ Rj)

R1 R2 R3 R4

x_1 ≤ 1.99
squared_error = 12.998

samples = 2500
value = 5.04

x_0 ≤ 1.99
squared_error = 2.16
samples = 1000
value = 1.2

True

x_0 ≤ 1.99
squared_error = 3.84
samples = 1500
value = 7.6

False

squared_error = 0.0
samples = 400
value = 3.0

squared_error = 0.0
samples = 600
value = 0.0

squared_error = 0.0
samples = 600
value = 10.0

squared_error = 0.0
samples = 900
value = 6.0

R1

R2

R3

R4

Figure inspired by the one in Murphy 25



Finding the best split at a node
• The learning algorithm is almost the same as for classification trees


• At each node we solve 


• For regression trees we use mean squared error for  


 where  is the mean target in a split

minimise
j,t

|𝔇L
i ( j, t) |

|𝔇i |
c(DL

i ( j, t)) +
|𝔇R

i ( j, t) |
|𝔇i |

c(DR
i ( j, t))

c

c(𝔇i) =
1

|𝔇i | ∑
n∈𝔇i

(y(n) − ȳ)2 ȳ
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The prediction

• At a leaf node, this is the the mean target associated with its training split

27

x ≤ 0.0
squared_error = 0.49

samples = 50
value = 0.0

x ≤ -2.693
squared_error = 0.101

samples = 25
value = -0.624

True

x ≤ 2.693
squared_error = 0.101

samples = 25
value = 0.624

False

squared_error = 0.02
samples = 4
value = -0.189

squared_error = 0.074
samples = 21
value = -0.706

squared_error = 0.074
samples = 21
value = 0.706

squared_error = 0.02
samples = 4
value = 0.189

R1 R2 R3 R4

R1

R2

R3

R4



The pros and cons of trees

• Pro: They are interpretable (-ish)


• Pro: They are fast to train


• Pro: They don’t require data to be scaled 


• Pro: They can handle mixed (discrete + continuous) inputs


• Con: They are unstable (add some noise and get a different tree!)


• Con: They typically don’t work as well as other models by themselves

Inspired by Murphy 28



Bagging and boosting
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Bagging 

• A decision tree can (and will) overfit to training data, making mistakes that 
won’t give us a model that generalises to held-out data


• But if we have an ensemble of trees trained on different versions of the 
training data then they won’t all make the same mistakes


• We expect that if we average the decisions of all these trees (the wisdom of 
the crowd) we will get something that generalises better

30



Bagging (bootstrap aggregation)
• Goal: We want to train a bagging ensemble on our training set 




• For  in range( ):


• Create a bootstrap dataset  from the training set:  points are 
sampled with replacement from  (usually )


• Train a model  on 

𝔇 = {(x(n), y(n)) ∈ N}

t T

𝔇(t) M
𝔇 M = N

ft(x) 𝔇(t)

To apply the ensemble to a new point, average the 
outputs of the  models T

f(x) =
1
T ∑

t

ft(x)

31

Bagging isn’t exclusive to tree-
based models!



Bagging with Classification trees

• Put a new point through each tree  to get the class probability distribution 


• Then just average all the  and pick the class with the highest probability

t pt

pt

32



Out of bag (OOB) samples

• Each bootstrap is usually  points sampled with replacement


• The points that aren’t in a bootstrap can be used for validation

N

33

𝔇(1) 𝔇(2) 𝔇(3)

𝔇



Random forests

• A random forest is a bagging ensemble where each individual model is a tree


• For each tree, only a random subset of features are made available at 
each node for learning each split


• This encourages variety!

34



Boosting

• Consider a weak learner  that makes lots of mistakes


• Now consider another weak learner  that tries to fix the mistakes made 
by . We can use these in an ensemble: 


• This will still be terrible, but what if we add  that tries to fix the mistakes 
made by the previous ensemble and so on…  


• This process is known as boosting. It creates an ensemble of weak learners 
that in combination can be very powerful: 

F0(x)

F1(x)
F0(x) f1(x) = F0(x) + F1(x)

F2(x)

ft(x) = ∑
t

Ft(x)

Boosting isn’t exclusive to tree-
based models, but they are the 

most common weak learner

35



Gradient boosting rationale

• This is basically gradient descent in function space


• We have a training set 


• Let’s represent our function at some step  by its values on the training set: 





• If there is some loss  we care about minimising (e.g. log loss) then we can 
evaluate it for each training point:


𝔇 = {(x(n), y(n)) ∈ N}

t

ft = [ft(x(1)) ft(x(2)) … ft(x(N))]⊤

L

L(ft) = [L(y(1), ft(x(1))) L(y(2), ft(x(2))) … L(y(N), ft(x(N)))]⊤

36



Gradient boosting rationale continued

• We have a loss at step  given by





• We can compute the gradient of this wrt. :





• And perform a gradient descent-style update 

t

L(ft) = [L(y(1), ft(x(1))) L(y(2), ft(x(2))) … L(y(N), ft(x(N)))]⊤

ft

gt = [∇ftL(y(1), ft(x(1))) ∇ftL(y(2), ft(x(2))) … ∇ftL(y(N), ft(x(N)))]
⊤

= [g(1)
t g(2)

t … g(N)
t ]

ft+1 = ft − αgt

37



Gradient tree boosting

• In gradient tree boosting our function at step  is an ensemble of 
regression trees 


• We perform a gradient-descent style update by fitting a new regression tree 
to the negative gradient  

 

• So usually we fit a regression tree using 


• In gradient boosting we fit a regression tree using 

ft(x)
ft(x) = ∑

t

Ft(x)

gt = [∇ftL(y(1), ft(x(1))) ∇ftL(y(2), ft(x(2))) … ∇ftL(y(N), ft(x(N)))]
⊤

= [g(1)
t g(2)

t … g(N)
t ]

{(x(n), y(n))}N
n=1

{(x(n), − g(n)
t )}N

n=1

38



Gradient tree boosting algorithm
• Goal: We want to train a gradient boosted ensemble on our training set 

 that minimises some loss 


• Initialise 


• For  in range( ):


• Compute the gradients 


• Fit a regression tree  using 


• Update ensemble 

𝔇 = {(x(n), y(n)) ∈ N} L

f0(x) = F0(x)

t T

gt = [g(1)
t g(2)

t … g(N)
t ]

Ft(x) {(x(n), − g(n)
t )}N

n=1

ft+1(x) = ft(x) + αFt(x)

39

Sometimes the values at the 
leaf nodes of each tree are re-
computed to minimise the loss 

after fitting but we omit this 
detail for simplicity 



Gradient tree boosting example

40



XGBoost (eXtreme Gradient Boosting)

• Famous for winning lots of Kaggle competitions! 


• This is gradient tree boosting plus a bag of tricks


• See Murphy p613 for more details

41



Coursework 2 (30% of course mark)
• You will perform data analysis and machine learning on a dataset of the metadata and 

reviews for 3777 papers submitted to a top machine learning conference (ICLR 2023)


• You should write a 4-8 page report with an appendix containing code where you:


1. Describe the dataset, and what the different columns correspond to


2. Provide informative summarisations and visualisations of the dataset and discuss these


3. Propose and carefully define several regression and classification tasks on this dataset


4. Train and evaluate models for these tasks


5. Select a model for each task, and discuss its usefulness


• The full brief, dataset, submission instructions, and the marking rubric are available on Learn 
under the “Assessment” tab (after 1000 today). Deadline 26/3 @ 1600



Summary

• We have learnt about classification and regression trees 


• We have seen how to formulate node splitting as an optimisation problem


• We have seen how decision trees can overfit 


• We have learnt about bagging to create ensembles


• We have learnt about gradient boosting to create ensembles 
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