®
DEIEWAENIS
& Machine Learning

Data Analysis and Machine
Learning 4 (DAML)

Week 9: Gaussian Processes

Q%> THE UNIVERSITY

Elliot J. Crowley, 18th March 2024 I
O of EDINBURGH

Recap

 We looked at classification and regression trees

x_2<0.294
gini = 0.667 x_1=<1.99
samples = 30 squared_error = 12.998
value = [10, 10, 10] | samples = 2500
class =0 value = 5.04

Trui/ \F‘alse True/ W‘alse

= x_1=0.454
sanplos - 10 gini = 0.5 x_0=1.99 x_0 <1.99
value 2 [10, 0, 0] samples = 20 squared_error = 2.16 squared_error = 3.84
_0 value = [0, 10, 10] samples = 1000 samples = 1500
=t class = 1 value =1.2 value = 7.6

sa?r;rglzsoéom squared_error = 0.0 squared_error = 0.0 squared_error = 0.0 squared_error = 0.0

value = [0, 10, 0] samples = 400 samples = 600 samples = 600 samples = 900
class = 1 value = 3.0 value = 0.0 value = 10.0 value = 6.0

 We looked at bagging and boosting as techniques for forming ensembles

B H I 'f' 5 0 t Ensemble after 0 rounds of gradient boosting Ensemble after 1 rounds of gradient boosting Ensemble after 2 rounds of gradient boosting Ensemble after 3 rounds of gradient boosting Ensemble after 4 rounds of gradient boosting
a g g I n g C a SSI Ie r reeS MSE loss = 0.987 MSE loss = 0.515 MSE loss = 0.119 MSE loss = 0.101 MSE loss = 0.087
- . 2.0 2.0 2.0 2.0 2.0
Validation accuracy: 0.944 . s ,

15 15 . . .

@ classO 10
* ®
O class1 os
> 0.0 > 0.0
-05 -05
L J '«5
-1.0 -1.0
D D -15 -15
D L ® L ® # ¢ L ® €
-2.0 -2.0 -2.0 -2.0 -2.0
@ -100 -75 -50 -25 0.0 25 50 75 100 -100 -75 -50 -25 00 25 50 75 100 -100 -75 -50 -25 00 25 50 75 100 -100 -75 -50 -25 00 25 50 75 100 -100 -75 -50 -25 00 25 50 75 100
x x x x x
Ensemble after 5 rounds of gradient boosting Ensemble after 6 rounds of gradient boosting Ensemble after 7 rounds of gradient boosting Ensemble after 8 rounds of gradient boosting Ensemble after 9 rounds of gradient boosting
E MSE loss = 0.068 MSE loss = 0.054 MSE loss = 0.039 MSE loss = 0.033 MSE loss = 0.032
2.0 2.0 2.0
@ ® k.
D 15

-2 -2.0 -2.0 -2.0 -2.0
Xl -100 -7.5 -50 -25 00 25 50 7.5 100 -100 -7.5 -50 -25 00 25 50 7.5 100 -100 -7.5 -50 -25 00 25 50 75 100 -100 -7.5 -50 -25 00 25 50 7.5 100 -100 -7.5 -50 -25 00 25 50 7.5 100
x x x x x

Gaussian Processes (GPs)

* A non-parametric model that can be used for regression and classification

 We are only going to consider GPs for regression on this course

e | et’s say there is some unknown function we want to model

e |f we model this function with a Gaussian process we assume that the value
of the function at any point is a random variable...

* And that any combination such random variables have a multivariate
Gaussian distribution

Warning: Gaussian Processes can be conceptually tricky

AR o studen

Demonstrate an
understanding of
Gaussian Processes

,

IIAMIS'I'IIIIEHTS N

{ IIEI'I'WEEK
— .

\ - Em ss IA“
vo— .
.
-
»
.

Random variables

“A mathematical formalisation of a quantity or object which depends on
random events”

Wikipedia

“Something that gives you a different value each time you record it”

Elliot J. Crowley

This is not a rigorous definition. A
random variable can represent

something that hasn’t happened yet
for instance

Random variables

e The roll of a die can be treated as a random variable

* Pretty much anything we take measurements of (my height, current flow in a
circuit, the mass of a currant bun) can be treated as a random variable

* This is because there will (almost always) be some form of noise giving us
fluctuations between measurements

Most of you learnt about

COntiHUOus random variables these in EM2B

e Let X € R be a continuous random variable P
i u&&’:id?
» We can describe X using a probability density function (pdf) p(x) ' Sherthand for p(X = x)

b 00
e Pla< X<b) = J p(x) dx so it follows that J p(x)dx =1

— OO0

* The mean and variance of X can be computed from p(x)

» E[X] = [xp(x)dx = (X — p)°] = VIX] = [(x =)’ p(x)dx = 6”

* But what should we use for p(x)?

The Gaussian (/normal) distribution

* We will default to using Gaussian pdfs

 (Gaussians are easy to interpret, mathematically convenient, and can be
justified by invoking the Central limit theorem with some handwaving

| I >
x_
. p(X) = N (x; u, 62) = —\/72 e 22T or X ~ N (u, 62
270

0.8- —— p§=0,0=05 0.87 —— ©=100,0=0.5
0.7 u=0,0=1 0.7 - u=100,0=1
0.6- —— u=0,0=2 0.6- —— Hu=100,0=2
0.5- 0.5-

X 0.4- X< 0.4-

Q Q
0.3- 0.3-
0.2- A 0.2- m
0.1 0.1 -
0.0- 0.0-

—4 2 0 2 4 96 98 100 102 104

X X

Bivariate Gaussians

» Suppose we now have two random variables X, X, that we care about

» We can assume that they are jointly Gaussian p(x, x,) = A (x, x,; i, 2)

A1 M 011 O12
~ N :
[?Cz] (/42] [02,1 52,2])

» Here o; ; = [(Xl- — —[Xi])(Xj — —[Xj])]. | am using this notation to represent

both variances (i = j) and covariances (i # j)

Examples of Bivariate Gaussians

0'1’2=O 0'1’2=O.9 0'1’2=—0.5

pxp, xp) = N (xp, X5 j, 2)

Hq 011 O12
Y —

I,[—
12%) 01 029

-3 -2 -1 0 1 2 3
X1 X1 X1

Code for plots adapted from https://www.geeksforgeeks.org/visualizing-the-bivariate-gaussian-distribution-in-python/
10

Marginalising and conditioning a Bivariate Gaussian

A1 M1 011 012
() o w])

 Marginalising:
pxy) = N (x5 4y, 011) and p(x,) = N (x5 U, , 6,). These are Gaussian

* Conditioning:
What happens if we find out that the exact value for X, is x;?
We can consider p(x, | X; = x;). The probability distribution over x, conditioned on

knowing X; = x;. This is also Gaussian!
2

. 01,2 01,2
POy | Xy = x1) = N (x5 iy + ——(x] — 1y), 0o — —)
01,1 01,1

11

Conditioning a Bivariate Gaussian example

A 0 1 09
S ~ N ,
. uppcse |:X2:| (|:2:| |:().9 1 :|> 047
» We can marginalise to get p(x,) = /4 (x,; 2,1) : /\

» We then find out that x, is definitely —0.5

. p(%, | X; = — 0.5) = N (x,; 1.55,0.19)

Multivariate Gaussians

» If we have several random variables we care about X, X,, ..., X, then we can

combine these into a random vector X € |

D

* We can assume these are all jointly Gaussian!

o p(X) = N (X3 p, %) =

M1 011
Iz 07 1
. Here u = ,2 and 2 = |

Hp Op 1

2m)P=| X

exp| — l(X —) T (x —p)
1/2 2

Oip -+ Op
02,2 c oo Gz,D
0D,2 © oo GD,D

13

Marginalising a Multivariate Gaussian

X1 Uy 011 012 -+ O1p
X 12%) 01 020 ... Opp
f| 7| ~ /V(e , , . , then...

AD Hp 0p1 Opp --- Opp

plx)) = N (x5 51,1)
p(xy) = N (x5 g 02,2)

Conditioning a Multivariate Gaussian

. Let’s partition X as X = [X[,X;]' where x; € RP1 and x, € R?:

RS Hi 21 2
» We can write [Xz] ~ N ([”2], £, I,)

* Let’s say we now find out that X, is exactly ... X; (lazy notation :)). We can
write p(X, | X)) = N (Xp; 1> o)

Hoj1 = Hy + 22’121_,11()(1 — 1)
=2 XX,

15

(Gaussian Processes

A Gaussian Process (GP)

e Consider modelling some unknown function that maps X € | PDto |

. In Week 5, we used models of the form f(x) = w'x

A Gaussian process model f(X) ~ GP(m(X), k(X, X")) is a bit more
complicated:

.
1. For any set of M inputs X = |x(1, x®, ... x| the function values
T
I = [f(x(l)), fx9), ..., f(X(M))] are random variables

2. These random variables have a multivariate Gaussian distribution

f~ WV (p,2)

GPs are defined by their mean and kernel functions

o f~ N (p,2)

e u = [mxM), m(x?), ...,m(x™)]" where m is a user-supplied mean
function

. Zi,j = k(x", x)) where k is a user-supplied kernel function

f(X(l)) m(X(l)) k(X(l), X(l)) k(X(l), X(Z)) k(X(l), X(M))
f(X(Z)) o (m(X(Z)) k(X(Z), X(l)) k(X(2), X(Z)) k(X(Z), X(M)))

AxM) m(xM)) k(xM x(Dy p(xM x)y kg(x™M) x(M)

18

GP prior

* Our choice of mean and kernel function represent our a priori assumptions
about what the function f(X) should look like before we see any data

« Without any additional information it’s reasonable to use m(x) = 0

. The kernel k(x'¥, X)) gives the covariance between f(x"") and f(x")

* |t is reasonable to assume that the function values of points close together
will be correlated and those of points further away will be less correlated

1x — xW||?
2

* \WWe can embed this assumption using e.g. k(x",x\) = exp(

19

Sampling from the GP prior (1D case)

» Consider modelling a R — R mapping using f(x) ~ GP(m(x), k(x, x"))

- (x® — x(D)2
. m(x)=0(@op=[0 0 ..] =0)andand X ; = k(x",xV) = eXp()

2
e f~ H(0,2) for any X. This is our GP prior

.
e Let’'suse X = [—5, —49, —-43,...,+4.8,+ 4.9, + 5] and sample f vectors from /' (0,) to get
possible functions from our GP prior

3 3 3 3 3 3 3 3
21 21 2 21 21 21 21 21
1- 1- 1 1- 1- 1- 1- 1-
- 0 0 0 0 OM 0 0 0
~1- - 1 —1/\/\/—1 - 1 —1W
-2 2 2) - 2- - 2- 2 2
-3 3 3 3 A3 I -3 -3 3

A distribution for each function value

» We can marginalise f ~ 4/ (0, X)) to see what the distribution of function
values is for each input x. It is f(x) ~ A4(0,1) Vx for our prior

» We can plot the mean i, and shade u = 20 (the 95% confidence interval) of
f(x) for each x but this isn’t very exciting!

21

Conditioning a GP
« Consider some X and the distribution over function values at these points
p|X) = N (T px. ZX,X)

. Consider some other points X and the distribution p(f: | X.) = A/ (fs; px ZX*,X*)

ZxX =XX.
» By the definition of a GP we can write t ~ N FX , | D,

* Let’s say we now find out the exact values of f. We can condition f: on these.

» p(L 1, X, Xo) = Nk px x> 2x,x) Where pix x = pix, + ZX*,XZ}_(,IX(f — Hx)

— -1

22

GPs Iin the context of ML

f 125 ZX,X ZX,X* |
» We have [f] ~ N [ﬂx] S x Exx & p(L |1, X, Xs) = N (Es oy xo 2x.1%)

« Now suppose we are doing regression and have training data D = {(x<">,y<">)}f,¥:1
where X € | Dandy e

.
« Let X be our training points X = [X(U x?) X(N)] and f be our targets
f=[O y@ ™

» We can make function predictions at new points X in light of our training data by
looking at p(f. | £, X, X..). This is our GP posterior

23

GP regression

 Marginalising p(f: | f, X, X.) for some function value gives a Gaussian
distribution

 The mean of that distribution can be used as a prediction for regression

* The variance quantifies how much uncertainty there is in that prediction

3

—— Mean
95% confidence bound
- ® Training data

1_

Sampling from the posterior

« p(f: |1, X, X,) is just a multivariate Gaussian we can sample from to get

possible functions

* Notice that all functions we sample interpolate the training points

3

2_

e

>~

—— Mean
95% confidence bound
® Training data
—— Sampled function 1
Sampled function 2
—— Sampled function 3

ol

25

Noisy measurements?

* Notice that the mean curve perfectly interpolates the training data (here, and
on the previous slide), and that there is zero uncertainty when this happens

* This Is a strong requirement, and we might need to accept that our training
targets might be noisy :’(

3

95% confidence bound

5 4 ® Training data

1_

Dealing with noisy measurements

-
« \We can (waves hands) assume that our targets 'y = [y(l) y(z) y(N)]
suffer from additive Gaussian noise i.e. y = f(X) + 4/ (0, Gyz)

» For a GP with mean function zero, we have f ~ /' (0, Zx x). It follows that
y ~ /0, Zx x + 6,1

y 2xx Uyz I 2xx,

e~ N (0,

)

« [This gives us [
ZX*,X ZX*,X*

From hereon we assume m(X) = 0. This is quite a common
assumption. See https://stats.stackexchange.com/questions/
63251/what-justifies-the-zero-mean-assumption-for-gaussian-

processes for some thoughts on the matter.

27

https://stats.stackexchange.com/questions/63251/what-justifies-the-zero-mean-assumption-for-gaussian-processes
https://stats.stackexchange.com/questions/63251/what-justifies-the-zero-mean-assumption-for-gaussian-processes
https://stats.stackexchange.com/questions/63251/what-justifies-the-zero-mean-assumption-for-gaussian-processes

Conditioning a GP subject to noisy measurements

. [Y] - 40, ZX,X_I_GyZI 2x X,)

L. EX*,X ZX*,X*

* We can use the conditioning formula to get a GP posterior subject to noisy

measurements

pily, X, Xs) =N (f*;ﬂX*\Xa ZX*\X) :

px.x = 2x, x(Zxx + Uyl)_ly

2%, x = 2x,x, — 2x, x(Zxx + Uyl)_lzx,x*

Mean
95% confidence bound

28

Kernels

1xW — x)|2
2)

* This is a simplified version of the RBF or squared exponential kernel
o HX(Z) _X(J)HZ
P (L

. We have used k(X(i), X(j)) = €Xp (—

207
» Notice that it has a hyperparameter ¢

» The output of the kernel must always be > 0

29

The length scale of the RBF kernel

HX(i) _ X(j)HZ)

« £ is known as the lengthscale and determines how wiggly functions drawn
from the GP are

AT A)) M))) im / ,
£ =0.1 W W N WWWMWW JWL \‘;M\WWSJ\’V\}\AWMM: / i

Scaling the RBF kernel

e |t is common to multiple kernels by a hyperparameter o’ (the output variance)

X9 — xW||?
)

 k(xY, xV)) = 67 exp(

. 07 determines the average distance of function values from the mean

3 3 3 3 3 3
2- 2- 2- 2- 2- 2- 2- 2-
1- 1- 1- 1- 1- 1- 1- 1-
2 Y— O_\/\/ O—’\/\/ O_/\/ O—/\/\/ O‘/\/\/\ 0—\/_\/ 0_/\/\/\/ O_\/_’\/\/
O = 0.1 ~1- 14 -1+ -1+ 1 - 1- 1- 1+
~2- - 2- - 2- - 2- 2 - - 2- - 2- - 2-
_3| I 3 I 3| I 3| I 3| I 3 I 3 I 3| I
-5 0 5 -5 0 5 -5 0 5 -5 0 5 -5 0 5 -5 0 5 -5 0 5 -5 0 5
X X X X X X X X
3 3 3 3 3 3 3 3
2- 2- 2- / 2- 2- 2- 2- 2-
1- 1- 1- 1- 1- 1- 1- 1-
) “~ 0- 0- 0- 0- 0 0- 0- 0
O = 1() ~1- 1 1 1 1 - 1 1 1
—2- -2 - -2 -2 /—2 —2\ -2 /—2— A
_3| T 3 T 3| 3| T 3| 3| 3| I \ I 3| I
5 0 5 -5 0 5 -5 0 5 -5 0 5 -5 0 5 -5 0 5 -5 0 5 -5 0 5
X X X X X

31

Kernels are important

* The choice of kernel is the most important factor for determining the
behaviour of a GP

e |t is us providing our assumptions about the problem!

32

The period kernel (Exp-Sine-Squared)

z||[x® — x|

o 2 sin*(———)
P

» ¢ behave the same as for the RBF kernel. p is the periodicity

S
1
b

S
|

2 2-
14 14
_1 By
o 5
34 . 34

5 0

N

1 - 1
2 - 2
34 . 3

2_
5 0

2 -
1 -
0-

L] -

LD -

r—3

|

I

A

5
1- 1-
0- 0-

1. 4

2 - 2

0

X
3
5
N
) OM

N
N

3 |

5 0

5 ~ —5 0
X X
3 3 3
2 2 2
14 14 14
0- 0- 0-
- 1 1
_2— _2— __
T 3 T T T 3 T T
5 ~ —5 0 5 ~ —5 0
X

5 -5 0 -

X
3 3

21 21

14 14

0- 0

_1— _1_
0

0 - 0
— 1 — 1
— 2 — 2 -

A A
X

33

There are lots of others kernels!

e See https://www.cs.toronto.edu/~duvenaud/cookbook/ for all
the kernels you could ever care to know about

* |n the above, all kernels have a scaling factor

» Sklearn kernels don’t by default, just be aware of this!

‘@e.

34

https://www.cs.toronto.edu/~duvenaud/cookbook/

Hyperparameters again!

o Kernels have hyperparameters

 We could do a grid search to find the best hyperparameters to minimise e.g.
MSE on a validation set, but this would be slow. Is there a faster way? (Yes)

o |et’s find the hyperparameters that maximise the likelihood of our targets,
given our data: p(y | X)

« With noisy measurements we have definedy ~ (0, 2y x + ayzl)

* In the expression above, the dependence on X was implicit. Let’s write the
whole thing explicitly: p(y | X) = A (y; 0, Zx x + Gyzl)

35

Optimisation

« We have p(y | X) = #(y; 0, Zx x + GyZI)

» Collecting our hyperparameters into a vector @, we want to solve

maximise p(y|X)
0

. This is equivalent to solving minimise — log p(y | X)
0

* This can be achieved using a gradient-based optimiser for differentiable
kernels

This quantity is known as
the log marginal likelihood
because we’ve integrated

out over f

1 1 1 , N
log p(y | X) = —Ey (Zx x + 0, 1) y—5108|zx,x+0y1‘ > log 27

36

Minimising the negative log-marginal-likelihood

 When you fit a GP to data in sklearn, an optimiser is used to find the kernel
hyperparameters that minimise the negative log-marginal-likelihood on train

Negative Log-marginal-likelihood

* There may be local minima...

-42.1

* We can run it multiple times from
different initial positions e

10° A

22.0

17.7

 Minimising this objective is fast but
not necessarily best

Lengthscale

14.3

10_1j

il o

9.3

7.5

1072 —— — o — — ———— 6.0
1072 101 100 10! 102 103 104
Output variance

37

GP example

e Kernels can be combined to form new kernels

« We'll look at a famous GP example: Predicting monthly CO, concentrations
(in ppm) from the Mauna Loa Observatory in Hawaii

o Training points
370 Validation points
360 A
s L)
’.
350 2l
€ & ofed
% ..! ° o
S TR
\(:l .‘ & :..: ° °
'y
& St
3301 38
VYRR
o & Do 0
a & ° ‘.:.."!O. ¢ °
320— e ...a.... ® o % o
s Ay dTT
2o % s T °
Py Y
1960 1970 1980 1990 2000

Time (year)

https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_co2.html#sphx-glr-auto-examples-gaussian-process-plot-gpr-co2-py
38

GP example

* First, we’ll make our data zero mean (but show the true value in the plot)

. Let’s naively assume there is minimal measurement noise (o, = 107

Y

e Points close to each other are correlated so let’'s use an RBF kernel

‘lf —_ (7;2}%13191p4(2f9)’

c = (0.999
£ =107

COz (ppm)

370

360

350

340

330

320 A

310 A

—— Mean

95% confidence bound

e Training points

Validation points

P
p ool
‘}.a.o:.":c
» g s|”
4‘4".":'.:
F AN
g olele .
“:.o;.o:..‘
—————
s'..o‘lo'”f..:-'..
."& I':;
adsatdse e
5;00 :;e;:
"":o e
%:4‘"'.‘“3‘ 4
Py ®
1960 1970 1980 1990 2000

Time (year)

39

GP example

* There is going to be measurement noise, but instead of guessing we can add
(x,x") = ar%ll(x = x') and fit 6, as a hyperparameter

a white noise kernel k, .,

_ 2 |

k=o kRBF (f) T knoise(an) 7
c= 392 .

c 350

r =46 S s

Gn - 00319 330-

Better. But it doesn’t wiggle. 3101

| —— Mean
95% confidence bound
e Training points
Validation points

1970 1980 1990
Time (year)

2000

40

GP example

 Our model can deal with the rising trend but not the seasonal variation

* |et’s add a periodic kernel and keep the length scale fixed as 1 year because
we know that this is the frequency!

* | also fixed the noise to stop it overfitting (GPs are fairly hacky)

3804 —— Mean
95% confidence bound

k = UJ%BFkRBF(f rBF) T Knoise(0, = 3.92) + ngp(bﬂ p=1) 3701 . \T/::S;nt?ofuorlr;ﬁts
URBF — 4.6 >0
£ onr = 50.5 2>
RBF — : 8:340-
GP — 0485 330 -

320

That’ll do

310 A

1960 1970 1980 1990 2000
Time (year)

41

The pros and cons of Gaussian processes

* Pro: They give you confidence intervals
 Pro: They work well in the low-data setting

* Pro: Providing a kernel can be more intuitive for baking in assumptions about
a problem that specifying a functional form from inputs to outputs

 Con: Fitting a GP involves inverting a matrix. This is 0(n3) SO IS very
expensive when there is lots of data

 Con: They assume Gaussian noise on the measurements, which might not be
true

e Con: Finding the right kernel can be tricky

42

Summary

* You have revised random variables and Gaussian pdfs

* You have learnt that Gaussian processes (GPs) model function values as
random variables that have a Multivariate Gaussian distribution

* You have seen how this distribution Is defined in terms of a mean function
(which is usually zero) and a kernel function

* You have learnt how to condition a GP on training data for prediction
* You have seen that kernels have hyperparameters which affect their behaviour

* You have seen that these can be optimised by maximising the marginal
likelihood

43

